- 浏览: 185499 次
- 性别:
- 来自: 济南
文章分类
最新评论
关于组合的题目我们一般用回溯法来解决。我的理解回溯法就是按照要求一直找下去,如果找到一个结果就把这个结果记录下来,然后返回上一层,如果有其它路线可以走就继续尝试,如果没有,就继续返回上一层。回溯的实现一般用递归来完成。这里介绍一下关于组合的问题,以及它的一些延伸。
1,Combination
给定两个正整数n和k,返回所有长度为k的组合,组合中的元素为1...n。
例如:n = 4, k = 2
输出:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]
很明显我们要用链表来记录结果,通过链表的大小来判断是否继续找下去,如果链表长度已经为k,那么就记录这个结果,返回,然后把链表的长度减去1,这样可以继续找其他的结果。当链表的size小于k的时候,我们就继续找下去,知道长度为k。
代码如下:
2,Combination Sum
给定一个数组number[] 和一个目标元素target,在数组中找出所有可能的组合,每个组合中元素的和为target,每个元素可以重复使用。
例如:number[] = {2, 3, 6, 7} target = 7
输出:[7], [2, 2, 3]
我们仍然使用回溯法,这次回溯的条件变为元素的和为target,即当我们遍历的元素的和为target时,我们就找到了一个结果,就把这个结果记录下来,然后返回上一层,继续查找其他结果,不要忘记返回后把链表的长度减1,要不然就不叫回溯了。代码如下:
3,Combination Sum2
给定一个数组numbers[] 和一个目标元素target,从数组中找出所有可能的组合,使组合中元素的和为target,每个元素只能使用一次。
例如:number[] = {10,1,2,7,6,1,5}; target = 8;
输出:
[1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]
这道题是combination sum的变形,关键一点时每个元素只能使用一次,只要我们在往下找的时候,不重复当前的元素就可以保证每个元素只能使用一次。代码如下:
4,Combination sum3
给定一个数组numbers[] ={1,2,3,4,5,6,7,8,9}, 一个目标元素target,一个正整数k。输出所有可能的组合,使组合的长度为k,并且组合中元素的和为target,数组中每个元素只能使用一次。
例如:k = 3, target = 9;
输出:[[1,2,6], [1,3,5], [2,3,4]]
这道题与sum2的区别仅在于多了一个限定的长度,因此我们在寻找结果的时候加上一个判断当前组合长度的条件就可以了。代码如下:
1,Combination
给定两个正整数n和k,返回所有长度为k的组合,组合中的元素为1...n。
例如:n = 4, k = 2
输出:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]
很明显我们要用链表来记录结果,通过链表的大小来判断是否继续找下去,如果链表长度已经为k,那么就记录这个结果,返回,然后把链表的长度减去1,这样可以继续找其他的结果。当链表的size小于k的时候,我们就继续找下去,知道长度为k。
代码如下:
public class Solution { public List<List<Integer>> combine(int n, int k) { List<List<Integer>> llist = new ArrayList<List<Integer>>(); LinkedList<Integer> list = new LinkedList<Integer>(); if(k > n) return llist; combination(1, n, k, list, llist); return llist; } private void combination(int start, int n, int k, LinkedList<Integer> list, List<List<Integer>> llist) { if(list.size() == k) { llist.add(new LinkedList<Integer>(list)); return; } for(int i = start; i <= n; i++) { if(list.size() < k) { list.add(i); combination(i + 1, n, k, list, llist); list.removeLast(); } } } }
2,Combination Sum
给定一个数组number[] 和一个目标元素target,在数组中找出所有可能的组合,每个组合中元素的和为target,每个元素可以重复使用。
例如:number[] = {2, 3, 6, 7} target = 7
输出:[7], [2, 2, 3]
我们仍然使用回溯法,这次回溯的条件变为元素的和为target,即当我们遍历的元素的和为target时,我们就找到了一个结果,就把这个结果记录下来,然后返回上一层,继续查找其他结果,不要忘记返回后把链表的长度减1,要不然就不叫回溯了。代码如下:
public class Solution { public List<List<Integer>> combinationSum(int[] candidates, int target) { List<List<Integer>> llist = new ArrayList<List<Integer>>(); LinkedList<Integer> list = new LinkedList<Integer>(); if(candidates == null) return llist; Arrays.sort(candidates); int end = candidates.length; combinateSum(0, end, candidates, target, list, llist); return llist; } public void combinateSum(int start, int end, int[] candidates, int target, LinkedList<Integer> list, List<List<Integer>> llist) { for(int i = start; i < end; i ++) { if(target - candidates[i] > 0) { list.add(candidates[i]); combinateSum(i, end, candidates, target - candidates[i], list, llist); list.removeLast(); } else if(target == candidates[i]){ list.add(candidates[i]); if(!llist.contains(list)) llist.add(new LinkedList<Integer>(list)); list.removeLast(); } else { return; } } } }
3,Combination Sum2
给定一个数组numbers[] 和一个目标元素target,从数组中找出所有可能的组合,使组合中元素的和为target,每个元素只能使用一次。
例如:number[] = {10,1,2,7,6,1,5}; target = 8;
输出:
[1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]
这道题是combination sum的变形,关键一点时每个元素只能使用一次,只要我们在往下找的时候,不重复当前的元素就可以保证每个元素只能使用一次。代码如下:
public class Solution { public List<List<Integer>> combinationSum2(int[] candidates, int target) { List<List<Integer>> llist = new ArrayList<List<Integer>>(); LinkedList<Integer> list = new LinkedList<Integer>(); if(candidates == null) return llist; Arrays.sort(candidates); combinateSum2(0, target, candidates, list, llist); return llist; } private void combinateSum2(int start, int target, int[] candidates, LinkedList<Integer> list, List<List<Integer>> llist) { for(int i = start; i < candidates.length; i++) { if(target - candidates[i] > 0) { list.add(candidates[i]); combinateSum2(i + 1, target - candidates[i], candidates, list, llist); list.removeLast(); }else if(target == candidates[i]) { list.add(candidates[i]); if(!llist.contains(list)) llist.add(new LinkedList<Integer>(list)); list.removeLast(); } else { return; } } } }
4,Combination sum3
给定一个数组numbers[] ={1,2,3,4,5,6,7,8,9}, 一个目标元素target,一个正整数k。输出所有可能的组合,使组合的长度为k,并且组合中元素的和为target,数组中每个元素只能使用一次。
例如:k = 3, target = 9;
输出:[[1,2,6], [1,3,5], [2,3,4]]
这道题与sum2的区别仅在于多了一个限定的长度,因此我们在寻找结果的时候加上一个判断当前组合长度的条件就可以了。代码如下:
public class Solution { public List<List<Integer>> combinationSum3(int k, int n) { List<List<Integer>> llist = new ArrayList<List<Integer>>(); LinkedList<Integer> list = new LinkedList<Integer>(); combinateSum3(1, k, n, list, llist); return llist; } private void combinateSum3(int start, int k, int n, LinkedList<Integer> list, List<List<Integer>> llist) { for(int i = start; i <= 9; i++) { if(n - i > 0 && list.size() < k) { list.add(i); combinateSum3(i + 1, k, n - i, list, llist); list.removeLast(); } else if(n == i && list.size() == k - 1) { list.add(i); llist.add(new LinkedList<Integer>(list)); list.removeLast(); } else { return; } } } }
发表评论
-
498. Diagonal Traverse
2019-11-15 13:52 271Given a matrix of M x N eleme ... -
496 Next Greater Element I
2019-11-14 13:50 274You are given two arrays (witho ... -
Word Break II
2016-03-09 03:15 392Given a string s and a dictiona ... -
Insert Interval
2016-03-08 02:11 380Given a set of non-overlapping ... -
Merge Intervals
2016-03-07 05:25 506Given a collection of intervals ... -
Merge k Sorted Lists
2016-03-07 04:03 570Merge k sorted linked lists and ... -
Multiply Strings
2016-03-06 07:27 484Given two numbers represented a ... -
N-Queens II
2016-03-06 03:06 674Follow up for N-Queens problem. ... -
N-Queens
2016-03-06 02:47 477The n-queens puzzle is the prob ... -
First Missing Positive
2016-03-05 03:09 436Given an unsorted integer array ... -
Spiral Matrix
2016-03-04 03:39 585Given a matrix of m x n element ... -
Trapping Rain Water
2016-03-04 02:54 594Given n non-negative integers r ... -
Repeated DNA Sequences
2016-03-03 03:10 432All DNA is composed of a series ... -
Increasing Triplet Subsequence
2016-03-02 02:48 908Given an unsorted array return ... -
Maximum Product of Word Lengths
2016-03-02 01:56 936Given a string array words, fin ... -
LRU Cache
2016-02-29 10:37 608Design and implement a data str ... -
Super Ugly Number
2016-02-29 07:07 702Write a program to find the nth ... -
Longest Increasing Path in a Matrix
2016-02-29 05:56 867Given an integer matrix, find t ... -
Coin Change
2016-02-29 04:39 795You are given coins of differen ... -
Minimum Height Trees
2016-02-29 04:11 733For a undirected graph with tre ...
相关推荐
代码首先定义了一个名为`Solution`的类,其中有两个方法:`bit1Count`和`combinationSum3`。`bit1Count`方法用于计算一个无符号整数中二进制形式的1的个数,而`combinationSum3`是解决该问题的主要方法。 在`bit1...
public static List<List<Integer>> combinationSum(int[] candidates, int target) { List<List<Integer>> result = new ArrayList(); List<Integer> combination = new ArrayList(); Arrays.sort(candidates);...
combinationSum ( self , candidates , target ): def backtrack ( tmp , start , end , target ): if target == 0 : ans . append ( tmp [:]) elif target > 0 : for i in range ( start , end ): tmp . append ( ...
vector<vector<int>> combinationSum(vector<int>& candidates, int target) { vector<vector<int>> result; vector<int> current; backtrack(candidates, target, result, current, 0); return result; } void...
CombinationSum 组合之和 完成 LinkedList 题目 说明 状态 AddTwoNumber 两数相加 完成 SwapPairs 两两交换链表中的节点 完成 String 题目 说明 状态 LongestSubstring 最长子串 完成 LongestPalindrome 最长回文...
在内容中提到的滑动窗口问题,例如“Combination Sum II”和“Sliding Window + Count Map”,涉及到在连续的数据结构中寻找满足特定条件的最长或最短子串的问题。这些技术要求编写者精通如何使用哈希表来快速追踪...
public List<List<Integer>> combinationSum(int[] candidates, int target) { List<List<Integer>> result = new ArrayList(); List<Integer> path = new ArrayList(); dfs(candidates, target, 0, path, ...
`README.txt`文件可能包含了关于如何运行和测试这段代码的信息,例如如何构建项目、如何调用`combinationSum`函数以及可能的输入和输出示例。 总结来说,这个Java代码解决了一个组合总和问题,利用了回溯算法寻找...
combination sum: 39, 40, 216 - palindrome partitioning - regex - sudoku solver: 37 排序 - merge sort - quick sort - insertion sort - selection sort - counting sort 位操作 - find the only element which...
1. **组合数**:计算从n个不同元素中取出k个元素的组合数,可以定义一个名为`combination`的函数。 2. **阶乘**:计算一个整数的阶乘,定义`factorial`函数。 3. **斐波那契数列**:生成斐波那契数列,定义`...
5. 回溯法:在解决如“N-Queens”(八皇后问题)或“Combination Sum”(组合总和)等问题时,回溯法是一种有效的策略。 三、编程语言应用 CodeBase项目支持多种编程语言,包括但不限于Java、Python、C++和...
P(A1+A2+\ldots+An) = \sum_{i=1}^{n}P(Ai) - \sum_{1 \leq i (AiAj) + \sum_{1 \leq i (AiAjAk) - \ldots + (-1)^{n-1}P(A1A2\ldots An) \] 根据上面给出的公式,我们可以进一步简化为: \[ P(A1+A2+\ldots+An) = ...
- **凸组合(Convex Combination)**:如果存在一组非负系数\(\alpha_i\) (\(i = 1, 2, ..., k\)),满足\(\sum_{i=1}^{k}\alpha_i = 1\),并且对于任意\(x_i \in X\) (\(i = 1, 2, ..., k\)),线性组合\(\sum_{i=1}^{k...
回溯法在解决组合问题中十分常见,如"Combination Sum"问题,要求找出所有可能的数字组合,使得它们的和等于目标值。Python的函数式编程特性,如生成器和列表推导,可以使回溯算法的实现更加清晰和简洁。 此外,...
int combination(int m, int n) { return factorial(m) / (factorial(n) * factorial(m - n)); } ``` #### 3.3 集合操作 文档最后部分讨论了集合的交集、并集、差集等操作,这对于学习如何处理数据结构非常有用...
1. 回溯法:中等难度题目中,回溯法是一种常见的解决方案,如"Combination Sum"(组合总和)和"N-Queens"(皇后问题),通过回溯可以找到所有可能的解。 2. 动态规划:"House Robber"(打家劫舍)系列问题,展示了...
在数学运算中,了解操作(Operation)、运算符(Operator)、乘积(Product)、求和(Sum)、除法(Division)、整数(Integer)、实数(Real Number)以及分数(Fractional Number)等基本概念是至关重要的。...
根据给定的文件内容,我们可以总结出一系列与最优化理论中的基本概念相关的知识点,特别是针对凸集、仿射集以及凸锥的相关定义及其性质。以下是对这些知识点的详细阐述: ### 1. 几何对象的基本表示 在讨论最优化...
总结,Adaboost是一种有效的集成学习方法,通过迭代和加权的方式,将多个弱分类器转换为一个强分类器。理解并掌握Adaboost有助于我们在处理分类问题时找到强大的解决方案。在实际应用中,需要根据具体任务调整参数,...