这段代码是关于多层聚合和嵌套域的聚合,来源:https://github.com/elasticsearch/elasticsearch/blob/master/src/test/java/org/elasticsearch/search/aggregations/bucket/NestedTests.java
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.elasticsearch.search.aggregations.bucket;
import org.elasticsearch.ElasticsearchException;
import org.elasticsearch.action.index.IndexRequestBuilder;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.common.xcontent.XContentBuilder;
import org.elasticsearch.search.aggregations.Aggregator.SubAggCollectionMode;
import org.elasticsearch.search.aggregations.bucket.histogram.Histogram;
import org.elasticsearch.search.aggregations.bucket.nested.Nested;
import org.elasticsearch.search.aggregations.bucket.terms.LongTerms;
import org.elasticsearch.search.aggregations.bucket.terms.StringTerms;
import org.elasticsearch.search.aggregations.bucket.terms.Terms;
import org.elasticsearch.search.aggregations.bucket.terms.Terms.Bucket;
import org.elasticsearch.search.aggregations.metrics.max.Max;
import org.elasticsearch.search.aggregations.metrics.stats.Stats;
import org.elasticsearch.search.aggregations.metrics.sum.Sum;
import org.elasticsearch.test.ElasticsearchIntegrationTest;
import org.hamcrest.Matchers;
import org.junit.Test;
import java.util.ArrayList;
import java.util.List;
import static org.elasticsearch.common.xcontent.XContentFactory.jsonBuilder;
import static org.elasticsearch.index.query.QueryBuilders.matchAllQuery;
import static org.elasticsearch.search.aggregations.AggregationBuilders.*;
import static org.elasticsearch.test.hamcrest.ElasticsearchAssertions.assertAcked;
import static org.elasticsearch.test.hamcrest.ElasticsearchAssertions.assertSearchResponse;
import static org.hamcrest.Matchers.equalTo;
import static org.hamcrest.Matchers.is;
import static org.hamcrest.core.IsNull.notNullValue;
/**
*
*/
@ElasticsearchIntegrationTest.SuiteScopeTest
public class NestedTests extends ElasticsearchIntegrationTest {
static int numParents;
static int[] numChildren;
static SubAggCollectionMode aggCollectionMode;
@Override
public void setupSuiteScopeCluster() throws Exception {
assertAcked(prepareCreate("idx")
.addMapping("type", "nested", "type=nested"));
List<IndexRequestBuilder> builders = new ArrayList<>();
numParents = randomIntBetween(3, 10);
numChildren = new int[numParents];
aggCollectionMode = randomFrom(SubAggCollectionMode.values());
logger.info("AGG COLLECTION MODE: " + aggCollectionMode);
int totalChildren = 0;
for (int i = 0; i < numParents; ++i) {
if (i == numParents - 1 && totalChildren == 0) {
// we need at least one child overall
numChildren[i] = randomIntBetween(1, 5);
} else {
numChildren[i] = randomInt(5);
}
totalChildren += numChildren[i];
}
assertTrue(totalChildren > 0);
for (int i = 0; i < numParents; i++) {
XContentBuilder source = jsonBuilder()
.startObject()
.field("value", i + 1)
.startArray("nested");
for (int j = 0; j < numChildren[i]; ++j) {
source = source.startObject().field("value", i + 1 + j).endObject();
}
source = source.endArray().endObject();
builders.add(client().prepareIndex("idx", "type", ""+i+1).setSource(source));
}
prepareCreate("empty_bucket_idx").addMapping("type", "value", "type=integer", "nested", "type=nested").execute().actionGet();
for (int i = 0; i < 2; i++) {
builders.add(client().prepareIndex("empty_bucket_idx", "type", ""+i).setSource(jsonBuilder()
.startObject()
.field("value", i*2)
.startArray("nested")
.startObject().field("value", i + 1).endObject()
.startObject().field("value", i + 2).endObject()
.startObject().field("value", i + 3).endObject()
.startObject().field("value", i + 4).endObject()
.startObject().field("value", i + 5).endObject()
.endArray()
.endObject()));
}
assertAcked(prepareCreate("idx_nested_nested_aggs")
.addMapping("type", jsonBuilder().startObject().startObject("type").startObject("properties")
.startObject("nested1")
.field("type", "nested")
.startObject("properties")
.startObject("nested2")
.field("type", "nested")
.endObject()
.endObject()
.endObject()
.endObject().endObject().endObject()));
builders.add(
client().prepareIndex("idx_nested_nested_aggs", "type", "1")
.setSource(jsonBuilder().startObject()
.startArray("nested1")
.startObject()
.field("a", "a")
.startArray("nested2")
.startObject()
.field("b", 2)
.endObject()
.endArray()
.endObject()
.startObject()
.field("a", "b")
.startArray("nested2")
.startObject()
.field("b", 2)
.endObject()
.endArray()
.endObject()
.endArray()
.endObject())
);
indexRandom(true, builders);
ensureSearchable();
}
@Test
public void simple() throws Exception {
SearchResponse response = client().prepareSearch("idx")
.addAggregation(nested("nested").path("nested")
.subAggregation(stats("nested_value_stats").field("nested.value")))
.execute().actionGet();
assertSearchResponse(response);
double min = Double.POSITIVE_INFINITY;
double max = Double.NEGATIVE_INFINITY;
long sum = 0;
long count = 0;
for (int i = 0; i < numParents; ++i) {
for (int j = 0; j < numChildren[i]; ++j) {
final long value = i + 1 + j;
min = Math.min(min, value);
max = Math.max(max, value);
sum += value;
++count;
}
}
Nested nested = response.getAggregations().get("nested");
assertThat(nested, notNullValue());
assertThat(nested.getName(), equalTo("nested"));
assertThat(nested.getDocCount(), equalTo(count));
assertThat(nested.getAggregations().asList().isEmpty(), is(false));
Stats stats = nested.getAggregations().get("nested_value_stats");
assertThat(stats, notNullValue());
assertThat(stats.getMin(), equalTo(min));
assertThat(stats.getMax(), equalTo(max));
assertThat(stats.getCount(), equalTo(count));
assertThat(stats.getSum(), equalTo((double) sum));
assertThat(stats.getAvg(), equalTo((double) sum / count));
}
@Test
public void onNonNestedField() throws Exception {
try {
client().prepareSearch("idx")
.addAggregation(nested("nested").path("value")
.subAggregation(stats("nested_value_stats").field("nested.value")))
.execute().actionGet();
fail("expected execution to fail - an attempt to nested facet on non-nested field/path");
} catch (ElasticsearchException ese) {
}
}
@Test
public void nestedWithSubTermsAgg() throws Exception {
SearchResponse response = client().prepareSearch("idx")
.addAggregation(nested("nested").path("nested")
.subAggregation(terms("values").field("nested.value").size(100)
.collectMode(aggCollectionMode)))
.execute().actionGet();
assertSearchResponse(response);
long docCount = 0;
long[] counts = new long[numParents + 6];
for (int i = 0; i < numParents; ++i) {
for (int j = 0; j < numChildren[i]; ++j) {
final int value = i + 1 + j;
++counts[value];
++docCount;
}
}
int uniqueValues = 0;
for (long count : counts) {
if (count > 0) {
++uniqueValues;
}
}
Nested nested = response.getAggregations().get("nested");
assertThat(nested, notNullValue());
assertThat(nested.getName(), equalTo("nested"));
assertThat(nested.getDocCount(), equalTo(docCount));
assertThat(nested.getAggregations().asList().isEmpty(), is(false));
LongTerms values = nested.getAggregations().get("values");
assertThat(values, notNullValue());
assertThat(values.getName(), equalTo("values"));
assertThat(values.getBuckets(), notNullValue());
assertThat(values.getBuckets().size(), equalTo(uniqueValues));
for (int i = 0; i < counts.length; ++i) {
final String key = Long.toString(i);
if (counts[i] == 0) {
assertNull(values.getBucketByKey(key));
} else {
Bucket bucket = values.getBucketByKey(key);
assertNotNull(bucket);
assertEquals(counts[i], bucket.getDocCount());
}
}
}
@Test
public void nestedAsSubAggregation() throws Exception {
SearchResponse response = client().prepareSearch("idx")
.addAggregation(terms("top_values").field("value").size(100)
.collectMode(aggCollectionMode)
.subAggregation(nested("nested").path("nested")
.subAggregation(max("max_value").field("nested.value"))))
.execute().actionGet();
assertSearchResponse(response);
LongTerms values = response.getAggregations().get("top_values");
assertThat(values, notNullValue());
assertThat(values.getName(), equalTo("top_values"));
assertThat(values.getBuckets(), notNullValue());
assertThat(values.getBuckets().size(), equalTo(numParents));
for (int i = 0; i < numParents; i++) {
String topValue = "" + (i + 1);
assertThat(values.getBucketByKey(topValue), notNullValue());
Nested nested = values.getBucketByKey(topValue).getAggregations().get("nested");
assertThat(nested, notNullValue());
Max max = nested.getAggregations().get("max_value");
assertThat(max, notNullValue());
assertThat(max.getValue(), equalTo(numChildren[i] == 0 ? Double.NEGATIVE_INFINITY : (double) i + numChildren[i]));
}
}
@Test
public void nestNestedAggs() throws Exception {
SearchResponse response = client().prepareSearch("idx_nested_nested_aggs")
.addAggregation(nested("level1").path("nested1")
.subAggregation(terms("a").field("nested1.a")
.collectMode(aggCollectionMode)
.subAggregation(nested("level2").path("nested1.nested2")
.subAggregation(sum("sum").field("nested1.nested2.b")))))
.get();
assertSearchResponse(response);
Nested level1 = response.getAggregations().get("level1");
assertThat(level1, notNullValue());
assertThat(level1.getName(), equalTo("level1"));
assertThat(level1.getDocCount(), equalTo(2l));
StringTerms a = level1.getAggregations().get("a");
Terms.Bucket bBucket = a.getBucketByKey("a");
assertThat(bBucket.getDocCount(), equalTo(1l));
Nested level2 = bBucket.getAggregations().get("level2");
assertThat(level2.getDocCount(), equalTo(1l));
Sum sum = level2.getAggregations().get("sum");
assertThat(sum.getValue(), equalTo(2d));
a = level1.getAggregations().get("a");
bBucket = a.getBucketByKey("b");
assertThat(bBucket.getDocCount(), equalTo(1l));
level2 = bBucket.getAggregations().get("level2");
assertThat(level2.getDocCount(), equalTo(1l));
sum = level2.getAggregations().get("sum");
assertThat(sum.getValue(), equalTo(2d));
}
@Test
public void emptyAggregation() throws Exception {
SearchResponse searchResponse = client().prepareSearch("empty_bucket_idx")
.setQuery(matchAllQuery())
.addAggregation(histogram("histo").field("value").interval(1l).minDocCount(0)
.subAggregation(nested("nested").path("nested")))
.execute().actionGet();
assertThat(searchResponse.getHits().getTotalHits(), equalTo(2l));
Histogram histo = searchResponse.getAggregations().get("histo");
assertThat(histo, Matchers.notNullValue());
Histogram.Bucket bucket = histo.getBucketByKey(1l);
assertThat(bucket, Matchers.notNullValue());
Nested nested = bucket.getAggregations().get("nested");
assertThat(nested, Matchers.notNullValue());
assertThat(nested.getName(), equalTo("nested"));
assertThat(nested.getDocCount(), is(0l));
}
}
上面的代码是链接上的.下面的是自己的应用.
public static Map<String, Object> GetRegionInfo(Client client,
RequestSignal requestSignal, Set<String> set) {
Map<String, Object> result = new HashMap<String, Object>();
AggregationBuilder aggs1 = AggregationBuilders.nested("level1").path(
"nna_regions");
AggregationBuilder aggs2 = AggregationBuilders.filter("level2").filter(
ConstValue.AGGS_FILTERBUILDER);
AggregationBuilder aggs3 = AggregationBuilders.terms("level3")
.field("nna_regions.sca_region").size(5000);
SumBuilder aggs4 = AggregationBuilders.sum("level4").field(
"nna_regions.dna_score");
SearchResponse response = client
.prepareSearch("flume-*-content-*")
.setQuery(ConstValue.queryBuilder_statAction(requestSignal))
.setSearchType("count")
.addAggregation(
aggs1.subAggregation(aggs2.subAggregation(aggs3
.subAggregation(aggs4)))).execute().actionGet();
Nested level1 = response.getAggregations().get("level1");
Filter level2 = level1.getAggregations().get("level2");
Terms level3 = level2.getAggregations().get("level3");
Collection<Terms.Bucket> collection = level3.getBuckets();
for (Terms.Bucket bucket : collection) {
String region = bucket.getKey();
long count = bucket.getDocCount();
double score = 0;
if (set.contains(region)) {
Sum sum = bucket.getAggregations().get("level4");
if (sum == null) {
System.out.println("null");
} else {
score = sum.getValue();
}
Map<String, Object> tmp = new HashMap<String, Object>();
tmp.put("count", count);
tmp.put("score", score);
result.put(region, tmp);
}
}
return result;
}
aggs1是取得嵌套域的名.
其他的代码,关于取日期域值的方法.
private String statRequest(Client esClient) {
FilteredQueryBuilder builder = QueryBuilders.filteredQuery(
QueryBuilders.matchAllQuery(),
FilterBuilders.rangeFilter("tfp_save_time").from(begTime)
.to(endTime).includeLower(true).includeUpper(true));
AggregationBuilder aggs1 = AggregationBuilders.terms("inp_type").field(
"inp_type");
AggregationBuilder aggs = AggregationBuilders.dateHistogram("By_Date")
.field("tfp_save_time").format("yyyy-MM-dd HH:mm:ss")
.extendedBounds(begTime, endTime).interval(statType);
SearchResponse response = esClient.prepareSearch("flume-*-content*")
.setQuery(builder).setSearchType("count")
.addAggregation(aggs1.subAggregation(aggs)).execute()
.actionGet();
Terms terms = response.getAggregations().get("inp_type");
Collection<Terms.Bucket> inp_type = terms.getBuckets();
Iterator<Bucket> inp_type_It = inp_type.iterator();
// Gson gson = new GsonBuilder().disableHtmlEscaping().create();
StatResult statResult = new StatResult(); // result.
while (inp_type_It.hasNext()) {
HashMap<String, Integer> test = new HashMap<String, Integer>();// result
// nested.
Bucket inpBucket = inp_type_It.next();
// System.out.println(inpBucket.getKey());
// System.out.println(inpBucket.getDocCount());
DateHistogram dateHistogram = (DateHistogram) inpBucket
.getAggregations().get("By_Date");
Collection<DateHistogram.Bucket> by_date = (Collection<DateHistogram.Bucket>) dateHistogram
.getBuckets();
Iterator<DateHistogram.Bucket> by_date_It = by_date.iterator();
while (by_date_It.hasNext()) {
DateHistogram.Bucket bucket = by_date_It.next();
int count = Integer.parseInt(String.valueOf(bucket
.getDocCount()));
String newdate = postDate(bucket.getKey());
test.put(newdate, count);
}
if (!test.isEmpty()) {
statResult.add(inpBucket.getKey(), test);
}
}
return statResult.toString();
}
http://www.cnblogs.com/wmx3ng/p/4096641.html
相关推荐
标签:elasticsearch、plugin、aggs、matrix、stats、client、中文文档、jar包、java; 使用方法:解压翻译后的API文档,用浏览器打开“index.html”文件,即可纵览文档内容。 人性化翻译,文档中的代码和结构保持...
标签:elasticsearch、plugin、aggs、matrix、stats、client、中英对照文档、jar包、java; 使用方法:解压翻译后的API文档,用浏览器打开“index.html”文件,即可纵览文档内容。 人性化翻译,文档中的代码和结构...
全面描述ElasticSearch技术,涵盖:插入数据、版本控制、Mapping 、Query查询【数据准备】、Filter查询【数据准备】、aggs聚合查询、组合查询/复合查询、ElasticSearch原理、JAVA API操作ES、实用技能。是我本人整理...
**Elasticsearch 8.x 向量搜索使用详解** Elasticsearch 8.x 版本引入了对向量搜索的支持,这使得它能够处理非结构化的数据,如图像、文本和语音的语义搜索。向量搜索是通过将数据转换为高维向量并进行相似度比较来...
如果你的Ruby对象需要映射到Elasticsearch索引,可以使用`elasticsearch-model` gem。首先,为你的模型添加继承关系并定义索引: ```ruby class Product include Elasticsearch::Model include Elasticsearch::...
在Elasticsearch中,Terms聚合可以使用以下方式定义: ``` { "aggs" : { "genders" : { "terms" : { "field" : "gender" } } } } ``` 在上面的示例中,我们使用Terms聚合对gender字段进行分组统计。Elastic...
Elasticsearch是一款强大的开源搜索引擎,广泛应用于大数据分析和实时数据检索。在Elasticsearch的世界里,理解基础概念和掌握基本操作是入门的关键。本篇文章将深入探讨这些知识点,并结合提供的`es.http`和`es_...
### Elasticsearch 数据库下载、配置及使用案例详解 #### 一、Elasticsearch简介 Elasticsearch 是一个基于 Lucene 的高性能、分布式、多租户能力的全文搜索引擎。它提供了丰富的功能,包括HTTP web接口和无模式的...
通过以上介绍,我们了解了 Elasticsearch 的基本概念、安装配置方法以及一些基本使用案例。Elasticsearch 作为一款高性能的分布式搜索引擎,在实际应用中可以发挥重要作用,尤其是在需要高效搜索和分析大量数据的...
在ElasticSearch中,新增操作使用PUT方法,格式为:`http://XXX.XXX.XXX.XXX:9200/<index>/<type>/<id>`。其中,index和type是必须提供的,id可以手动生成或由ES自动生成。在PUT请求体中,需要提供新增的数据JSON...
`es-sql.txt` 文件可能包含了使用 Elasticsearch SQL 查询语言编写的类似查询。Elasticsearch 从 6.0 版本开始支持 SQL 查询语法,使得对 ES 的查询更加直观,尤其是对于熟悉 SQL 的用户来说。在 SQL 查询中,我们...
elasticsearch,执行脚本错误,java.lang.IllegalArgumentException: cannot execute scripts using [aggs_executable] 配置文件配置
数据检索是Elasticsearch的核心功能,可以使用`search`方法: ```python query = { "query": { "match": { "title": "Python" } } } results = es.search(index=index_name, body=query) for hit in results['...
- **JDK**:ElasticSearch 需要 JDK 环境支持,推荐使用 JDK 7 或更高版本。 - **ElasticSearch**:选择适合当前系统的版本进行安装。 - **Kibana**:用于可视化 Elasticsearch 数据。 - **Maven**:构建工具,用于...
### Elasticsearch 数据库上传、配置与使用入门 #### 一、Elasticsearch 概述 Elasticsearch 是一款基于 Lucene 的高性能搜索引擎,它不仅提供了强大的全文检索能力,还支持分布式和多租户特性,适用于大规模的...
aggs-matrix-stats-client-7.13.4.jar,elasticsearch-7.13.4.jar,elasticsearch-cli-7.13.4.jar,elasticsearch-core-7.13.4.jar,elasticsearch-geo-7.13.4.jar,elasticsearch-plugin-classloader-7.13.4.jar,elastic...
要在 JavaScript 项目中使用 Elasticsearch API,首先需要安装对应的客户端库。如果你在 Node.js 环境中,可以通过 npm 进行安装: ```bash npm install @elastic/elasticsearch ``` 对于浏览器环境,可以使用 CDN ...
对于使用Node.js进行开发的项目,Elasticsearch提供了官方的Node.js客户端库,使得在Node.js环境中与Elasticsearch进行交互变得极为便捷。本文将深入探讨这个客户端库的使用和关键特性。 **1. 安装和初始化** 在...
### 数据聚合的艺术:深入解析 Elasticsearch 中的聚合技术 Elasticsearch 作为一个强大的搜索与分析引擎,在处理海量数据方面表现出色。其内置的聚合功能更是数据分析领域的重要工具之一。本篇文章将详细探讨 ...
导入 "accounts.json" 到 Elasticsearch 可以通过 `bulk` API 或者使用工具如 Logstash 完成。一旦数据导入,我们可以利用 Elasticsearch 强大的查询语言——Query DSL 来进行复杂的数据检索。例如,我们可以搜索...