- 浏览: 238810 次
- 性别:
- 来自: 上海
-
文章分类
最新评论
-
lwb314:
你的这个是创建的临时的hive表,数据也是通过文件录入进去的, ...
Spark SQL操作Hive数据库 -
yixiaoqi2010:
你好 我的提交上去 总是报错,找不到hive表,可能是哪里 ...
Spark SQL操作Hive数据库 -
bo_hai:
target jvm版本也要选择正确。不能选择太高。2.10对 ...
eclipse开发spark程序配置本地运行
搜狗实验室:http://www.sogou.com/labs/resources.html
用户查询日志:http://www.sogou.com/labs/dl/q.html
将上面三种数据全部下载下来,解压后拷贝到虚拟机的/usr/local/hive/hivedata目录中;
注意:如果数据乱码的情况下,请先转成utf-8的格式,方便后面的练习;
数据格式为
访问时间\t用户ID\t[查询词]\t该URL在返回结果中的排名\t用户点击的顺序号\t用户点击的URL
其中,用户ID是根据用户使用浏览器访问搜索引擎时的Cookie信息自动赋值,即同一次使用浏览器输入的不同查询对应同一个用户ID。
第一列:时间;第二列:id;第四列:搜索关键词;第四列:关键词在搜索结果中的排名;第五列:查询结果列表中用户点击了第几个;第六列:url;
创建外部分区表
分区d设置为d=sogouq1,d=sogouq2,d=sogouq3;
创建对应分区目录,并将数据上传到对应的分区中
加载数据到对应的分区中
查看分区
查看每个分区的数量
从上面看执行情况,发现hive执行时使用了一个 job,执行时间比较长,原因有二:
1.因为自己搭建的是四台虚拟机进行测试,和生产环境的大集群没有可比性;
2.hive执行MapReduce过程本身就很慢;
执行的过程中可通过浏览器查看job运行情况:
练习:(使用分区为sogouq3的数据,因为这里面的数据相对来说多一些)
1.统计分区d='sogouq3'中搜索结果为第一个,点击了第一个的有多少;
2.查询分区d='sogouq3'中搜索的关键字排名前5的数据;
3.url搜索访问此时排名前5的
4.统计一天中用户每个时间段搜索情况,并将结果存到临时表中;
5.统计用户每个时段搜索所在比例;
用户查询日志:http://www.sogou.com/labs/dl/q.html

将上面三种数据全部下载下来,解压后拷贝到虚拟机的/usr/local/hive/hivedata目录中;

注意:如果数据乱码的情况下,请先转成utf-8的格式,方便后面的练习;
数据格式为
访问时间\t用户ID\t[查询词]\t该URL在返回结果中的排名\t用户点击的顺序号\t用户点击的URL
其中,用户ID是根据用户使用浏览器访问搜索引擎时的Cookie信息自动赋值,即同一次使用浏览器输入的不同查询对应同一个用户ID。
第一列:时间;第二列:id;第四列:搜索关键词;第四列:关键词在搜索结果中的排名;第五列:查询结果列表中用户点击了第几个;第六列:url;
创建外部分区表
分区d设置为d=sogouq1,d=sogouq2,d=sogouq3;
hive> create external table tbsogou(id string,websession string,keyword string,search_seq int,click_seq int,website string) partitioned by (d string) row format delimited fields terminated by '\t' lines terminated by '\n'; OK Time taken: 0.208 seconds [img]http://dl2.iteye.com/upload/attachment/0115/7441/03188d9f-132d-3178-9e26-0668e800f756.png[/img]
创建对应分区目录,并将数据上传到对应的分区中
root@master1:/usr/local/hive/hivedata# ll 总用量 1379652 drwxr-xr-x 2 root root 4096 3月 6 19:05 ./ drwxr-xr-x 6 root root 4096 3月 6 19:08 ../ -rw-rw-r-- 1 jylu jylu 108750574 6月 14 2014 SogouQ1.txt -rw-rw-r-- 1 jylu jylu 217441417 6月 14 2014 SogouQ2.txt -rw-rw-r-- 1 jylu jylu 1086552775 7月 13 2014 SogouQ3.txt root@master1:/usr/local/hive/hivedata# hdfs dfs -mkdir /user/hive/warehouse/testdb.db/tbsogou/d=sogouq1 16/03/06 22:26:33 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable root@master1:/usr/local/hive/hivedata# hdfs dfs -put SogouQ1.txt /user/hive/warehouse/testdb.db/tbsogou/d=sogouq1 16/03/06 22:26:54 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable root@master1:/usr/local/hive/hivedata# hdfs dfs -mkdir /user/hive/warehouse/testdb.db/tbsogou/d=sogouq2 16/03/06 22:27:09 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable root@master1:/usr/local/hive/hivedata# hdfs dfs -put SogouQ2.txt /user/hive/warehouse/testdb.db/tbsogou/d=sogouq2 16/03/06 22:27:20 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable root@master1:/usr/local/hive/hivedata# hdfs dfs -mkdir /user/hive/warehouse/testdb.db/tbsogou/d=sogouq3 16/03/06 22:27:34 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable root@master1:/usr/local/hive/hivedata# hdfs dfs -put SogouQ3.txt /user/hive/warehouse/testdb.db/tbsogou/d=sogouq3 16/03/06 22:27:45 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable root@master1:/usr/local/hive/hivedata# hdfs dfs -lsr /user/hive/warehouse/testdb.db/tbsogou/ lsr: DEPRECATED: Please use 'ls -R' instead. 16/03/06 22:28:51 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable drwxr-xr-x - root supergroup 0 2016-03-06 22:26 /user/hive/warehouse/testdb.db/tbsogou/d=sogouq1 -rw-r--r-- 2 root supergroup 108750574 2016-03-06 22:26 /user/hive/warehouse/testdb.db/tbsogou/d=sogouq1/SogouQ1.txt drwxr-xr-x - root supergroup 0 2016-03-06 22:27 /user/hive/warehouse/testdb.db/tbsogou/d=sogouq2 -rw-r--r-- 2 root supergroup 217441417 2016-03-06 22:27 /user/hive/warehouse/testdb.db/tbsogou/d=sogouq2/SogouQ2.txt drwxr-xr-x - root supergroup 0 2016-03-06 22:28 /user/hive/warehouse/testdb.db/tbsogou/d=sogouq3 -rw-r--r-- 2 root supergroup 1086552775 2016-03-06 22:28 /user/hive/warehouse/testdb.db/tbsogou/d=sogouq3/SogouQ3.txt root@master1:/usr/local/hive/hivedata#
加载数据到对应的分区中
hive> ALTER TABLE tbsogou ADD PARTITION (d='sogouq1')LOCATION '/user/hive/warehouse/testdb.db/tbsogou/d=sogouq1'; OK Time taken: 0.266 seconds hive> ALTER TABLE tbsogou ADD PARTITION (d='sogouq2')LOCATION '/user/hive/warehouse/testdb.db/tbsogou/d=sogouq2'; OK Time taken: 0.177 seconds hive> ALTER TABLE tbsogou ADD PARTITION (d='sogouq3')LOCATION '/user/hive/warehouse/testdb.db/tbsogou/d=sogouq3'; OK Time taken: 0.245 seconds
查看分区
hive> show partitions tbsogou; OK d=sogouq1 d=sogouq2 d=sogouq3 Time taken: 0.152 seconds, Fetched: 3 row(s)
查看每个分区的数量
hive> select d,count(1) from tbsogou group by d; Query ID = root_20160307213457_df786923-5b7e-41e3-be18-bf6c2c06a926 Total jobs = 1 Launching Job 1 out of 1 Number of reduce tasks not specified. Estimated from input data size: 6 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer=<number> In order to limit the maximum number of reducers: set hive.exec.reducers.max=<number> In order to set a constant number of reducers: set mapreduce.job.reduces=<number> Starting Job = job_1457352585589_0001, Tracking URL = http://master1:8088/proxy/application_1457352585589_0001/ Kill Command = /usr/local/hadoop/hadoop-2.6.0/bin/hadoop job -kill job_1457352585589_0001 Hadoop job information for Stage-1: number of mappers: 5; number of reducers: 6 2016-03-07 21:35:21,593 Stage-1 map = 0%, reduce = 0% 2016-03-07 21:36:22,322 Stage-1 map = 0%, reduce = 0%, Cumulative CPU 3.86 sec 2016-03-07 21:36:39,202 Stage-1 map = 7%, reduce = 0%, Cumulative CPU 13.62 sec 2016-03-07 21:36:42,474 Stage-1 map = 19%, reduce = 0%, Cumulative CPU 14.91 sec 2016-03-07 21:36:46,047 Stage-1 map = 31%, reduce = 0%, Cumulative CPU 15.84 sec 2016-03-07 21:36:48,170 Stage-1 map = 44%, reduce = 0%, Cumulative CPU 16.12 sec 2016-03-07 21:36:49,239 Stage-1 map = 49%, reduce = 0%, Cumulative CPU 16.56 sec 2016-03-07 21:36:58,007 Stage-1 map = 60%, reduce = 0%, Cumulative CPU 17.53 sec 2016-03-07 21:37:07,956 Stage-1 map = 63%, reduce = 0%, Cumulative CPU 21.51 sec 2016-03-07 21:37:12,077 Stage-1 map = 68%, reduce = 0%, Cumulative CPU 24.44 sec 2016-03-07 21:37:15,700 Stage-1 map = 75%, reduce = 0%, Cumulative CPU 25.86 sec 2016-03-07 21:37:16,828 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 26.18 sec 2016-03-07 21:37:53,346 Stage-1 map = 100%, reduce = 4%, Cumulative CPU 27.15 sec 2016-03-07 21:37:56,467 Stage-1 map = 100%, reduce = 22%, Cumulative CPU 28.87 sec 2016-03-07 21:37:58,541 Stage-1 map = 100%, reduce = 28%, Cumulative CPU 29.83 sec 2016-03-07 21:37:59,589 Stage-1 map = 100%, reduce = 33%, Cumulative CPU 31.31 sec 2016-03-07 21:38:01,668 Stage-1 map = 100%, reduce = 50%, Cumulative CPU 33.3 sec 2016-03-07 21:38:02,712 Stage-1 map = 100%, reduce = 67%, Cumulative CPU 35.63 sec 2016-03-07 21:38:05,801 Stage-1 map = 100%, reduce = 83%, Cumulative CPU 37.31 sec 2016-03-07 21:38:06,831 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 39.19 sec MapReduce Total cumulative CPU time: 39 seconds 190 msec Ended Job = job_1457352585589_0001 MapReduce Jobs Launched: Stage-Stage-1: Map: 5 Reduce: 6 Cumulative CPU: 39.19 sec HDFS Read: 1491774463 HDFS Write: 49 SUCCESS Total MapReduce CPU Time Spent: 39 seconds 190 msec OK sogouq1 1000000 sogouq2 2000000 sogouq3 10000000 Time taken: 194.981 seconds, Fetched: 3 row(s)
从上面看执行情况,发现hive执行时使用了一个 job,执行时间比较长,原因有二:
1.因为自己搭建的是四台虚拟机进行测试,和生产环境的大集群没有可比性;
2.hive执行MapReduce过程本身就很慢;
执行的过程中可通过浏览器查看job运行情况:


练习:(使用分区为sogouq3的数据,因为这里面的数据相对来说多一些)
1.统计分区d='sogouq3'中搜索结果为第一个,点击了第一个的有多少;
hive> select count(*)cnt from tbsogou where d='sogouq3' and search_seq=1 and click_seq=1; Query ID = root_20160313111650_9c4bfb1e-c330-4ef1-b6f1-ef0d74812678 Total jobs = 1 Launching Job 1 out of 1 Number of reduce tasks determined at compile time: 1 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer=<number> In order to limit the maximum number of reducers: set hive.exec.reducers.max=<number> In order to set a constant number of reducers: set mapreduce.job.reduces=<number> Starting Job = job_1457829749863_0005, Tracking URL = http://master1:8088/proxy/application_1457829749863_0005/ Kill Command = /usr/local/hadoop/hadoop-2.6.0/bin/hadoop job -kill job_1457829749863_0005 Hadoop job information for Stage-1: number of mappers: 5; number of reducers: 1 2016-03-13 11:17:00,345 Stage-1 map = 0%, reduce = 0% 2016-03-13 11:17:12,813 Stage-1 map = 7%, reduce = 0%, Cumulative CPU 4.75 sec 2016-03-13 11:17:13,845 Stage-1 map = 20%, reduce = 0%, Cumulative CPU 5.04 sec 2016-03-13 11:17:16,936 Stage-1 map = 27%, reduce = 0%, Cumulative CPU 8.86 sec 2016-03-13 11:17:17,975 Stage-1 map = 40%, reduce = 0%, Cumulative CPU 9.81 sec 2016-03-13 11:17:26,298 Stage-1 map = 40%, reduce = 13%, Cumulative CPU 15.56 sec 2016-03-13 11:17:28,357 Stage-1 map = 53%, reduce = 13%, Cumulative CPU 19.81 sec 2016-03-13 11:17:32,491 Stage-1 map = 60%, reduce = 13%, Cumulative CPU 21.32 sec 2016-03-13 11:17:38,644 Stage-1 map = 67%, reduce = 20%, Cumulative CPU 22.65 sec 2016-03-13 11:17:40,708 Stage-1 map = 73%, reduce = 20%, Cumulative CPU 23.21 sec 2016-03-13 11:17:44,834 Stage-1 map = 100%, reduce = 20%, Cumulative CPU 24.91 sec 2016-03-13 11:17:47,903 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 26.27 sec MapReduce Total cumulative CPU time: 26 seconds 270 msec Ended Job = job_1457829749863_0005 MapReduce Jobs Launched: Stage-Stage-1: Map: 5 Reduce: 1 Cumulative CPU: 26.27 sec HDFS Read: 1147287940 HDFS Write: 8 SUCCESS Total MapReduce CPU Time Spent: 26 seconds 270 msec OK 3891022 Time taken: 58.658 seconds, Fetched: 1 row(s)
2.查询分区d='sogouq3'中搜索的关键字排名前5的数据;
hive> select keyword,count(*) as cnt from tbsogou where d='sogouq3' group by keyword order by cnt desc limit 5; Query ID = root_20160313111820_181be93c-07f4-4aa3-ab42-778b9cc2f312 Total jobs = 2 Launching Job 1 out of 2 Number of reduce tasks not specified. Estimated from input data size: 5 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer=<number> In order to limit the maximum number of reducers: set hive.exec.reducers.max=<number> In order to set a constant number of reducers: set mapreduce.job.reduces=<number> Starting Job = job_1457829749863_0006, Tracking URL = http://master1:8088/proxy/application_1457829749863_0006/ Kill Command = /usr/local/hadoop/hadoop-2.6.0/bin/hadoop job -kill job_1457829749863_0006 Hadoop job information for Stage-1: number of mappers: 5; number of reducers: 5 2016-03-13 11:18:31,471 Stage-1 map = 0%, reduce = 0% 2016-03-13 11:18:46,946 Stage-1 map = 7%, reduce = 0%, Cumulative CPU 6.6 sec 2016-03-13 11:18:57,652 Stage-1 map = 20%, reduce = 0%, Cumulative CPU 30.33 sec 2016-03-13 11:18:59,234 Stage-1 map = 33%, reduce = 0%, Cumulative CPU 32.57 sec 2016-03-13 11:19:02,356 Stage-1 map = 40%, reduce = 0%, Cumulative CPU 34.44 sec 2016-03-13 11:19:03,644 Stage-1 map = 47%, reduce = 0%, Cumulative CPU 36.89 sec 2016-03-13 11:19:05,416 Stage-1 map = 53%, reduce = 0%, Cumulative CPU 36.89 sec 2016-03-13 11:19:09,267 Stage-1 map = 67%, reduce = 0%, Cumulative CPU 40.57 sec 2016-03-13 11:19:10,466 Stage-1 map = 73%, reduce = 0%, Cumulative CPU 42.18 sec 2016-03-13 11:19:22,900 Stage-1 map = 80%, reduce = 0%, Cumulative CPU 45.82 sec 2016-03-13 11:19:27,047 Stage-1 map = 87%, reduce = 0%, Cumulative CPU 49.62 sec 2016-03-13 11:19:28,201 Stage-1 map = 93%, reduce = 0%, Cumulative CPU 50.0 sec 2016-03-13 11:19:29,228 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 51.6 sec 2016-03-13 11:19:38,556 Stage-1 map = 100%, reduce = 8%, Cumulative CPU 52.38 sec 2016-03-13 11:19:44,830 Stage-1 map = 100%, reduce = 26%, Cumulative CPU 53.72 sec 2016-03-13 11:19:47,907 Stage-1 map = 100%, reduce = 27%, Cumulative CPU 56.14 sec 2016-03-13 11:19:51,016 Stage-1 map = 100%, reduce = 29%, Cumulative CPU 59.15 sec 2016-03-13 11:19:54,105 Stage-1 map = 100%, reduce = 34%, Cumulative CPU 61.99 sec 2016-03-13 11:19:56,161 Stage-1 map = 100%, reduce = 40%, Cumulative CPU 63.76 sec 2016-03-13 11:20:13,727 Stage-1 map = 100%, reduce = 67%, Cumulative CPU 67.11 sec 2016-03-13 11:20:15,901 Stage-1 map = 100%, reduce = 83%, Cumulative CPU 71.64 sec 2016-03-13 11:20:16,927 Stage-1 map = 100%, reduce = 88%, Cumulative CPU 74.51 sec 2016-03-13 11:20:20,012 Stage-1 map = 100%, reduce = 90%, Cumulative CPU 76.43 sec 2016-03-13 11:20:23,082 Stage-1 map = 100%, reduce = 96%, Cumulative CPU 78.55 sec 2016-03-13 11:20:25,143 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 79.45 sec MapReduce Total cumulative CPU time: 1 minutes 19 seconds 450 msec Ended Job = job_1457829749863_0006 Launching Job 2 out of 2 Number of reduce tasks determined at compile time: 1 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer=<number> In order to limit the maximum number of reducers: set hive.exec.reducers.max=<number> In order to set a constant number of reducers: set mapreduce.job.reduces=<number> Starting Job = job_1457829749863_0007, Tracking URL = http://master1:8088/proxy/application_1457829749863_0007/ Kill Command = /usr/local/hadoop/hadoop-2.6.0/bin/hadoop job -kill job_1457829749863_0007 Hadoop job information for Stage-2: number of mappers: 2; number of reducers: 1 2016-03-13 11:20:37,281 Stage-2 map = 0%, reduce = 0% 2016-03-13 11:20:55,833 Stage-2 map = 17%, reduce = 0%, Cumulative CPU 2.7 sec 2016-03-13 11:20:58,917 Stage-2 map = 33%, reduce = 0%, Cumulative CPU 7.23 sec 2016-03-13 11:20:59,942 Stage-2 map = 44%, reduce = 0%, Cumulative CPU 8.87 sec 2016-03-13 11:21:00,966 Stage-2 map = 61%, reduce = 0%, Cumulative CPU 9.46 sec 2016-03-13 11:21:03,019 Stage-2 map = 83%, reduce = 0%, Cumulative CPU 11.85 sec 2016-03-13 11:21:06,098 Stage-2 map = 100%, reduce = 0%, Cumulative CPU 13.3 sec 2016-03-13 11:21:11,232 Stage-2 map = 100%, reduce = 100%, Cumulative CPU 17.45 sec MapReduce Total cumulative CPU time: 17 seconds 450 msec Ended Job = job_1457829749863_0007 MapReduce Jobs Launched: Stage-Stage-1: Map: 5 Reduce: 5 Cumulative CPU: 79.45 sec HDFS Read: 1147297321 HDFS Write: 115331402 SUCCESS Stage-Stage-2: Map: 2 Reduce: 1 Cumulative CPU: 17.45 sec HDFS Read: 115338803 HDFS Write: 110 SUCCESS Total MapReduce CPU Time Spent: 1 minutes 36 seconds 900 msec OK 百度 77627 baidu 36564 人体艺术 29598 4399小游戏 23306 优酷 20847 Time taken: 172.861 seconds, Fetched: 5 row(s) 从分析的结果看,用过搜狗查询的关键词是“百度”的挺高的。
3.url搜索访问此时排名前5的
hive> select website ,count(website) as cnt from tbsogou where d='sogouq3' group by website order by cnt desc limit 5; Query ID = root_20160313112231_24d147cb-8dce-412c-b255-67dc65660cd4 Total jobs = 2 Launching Job 1 out of 2 Number of reduce tasks not specified. Estimated from input data size: 5 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer=<number> In order to limit the maximum number of reducers: set hive.exec.reducers.max=<number> In order to set a constant number of reducers: set mapreduce.job.reduces=<number> Starting Job = job_1457829749863_0008, Tracking URL = http://master1:8088/proxy/application_1457829749863_0008/ Kill Command = /usr/local/hadoop/hadoop-2.6.0/bin/hadoop job -kill job_1457829749863_0008 Hadoop job information for Stage-1: number of mappers: 5; number of reducers: 5 2016-03-13 11:22:39,114 Stage-1 map = 0%, reduce = 0% 2016-03-13 11:22:54,627 Stage-1 map = 7%, reduce = 0%, Cumulative CPU 16.32 sec 2016-03-13 11:23:00,819 Stage-1 map = 20%, reduce = 0%, Cumulative CPU 28.21 sec 2016-03-13 11:23:01,845 Stage-1 map = 27%, reduce = 0%, Cumulative CPU 29.87 sec 2016-03-13 11:23:03,426 Stage-1 map = 33%, reduce = 0%, Cumulative CPU 29.87 sec 2016-03-13 11:23:09,805 Stage-1 map = 45%, reduce = 0%, Cumulative CPU 39.44 sec 2016-03-13 11:23:11,009 Stage-1 map = 60%, reduce = 0%, Cumulative CPU 42.0 sec 2016-03-13 11:23:14,083 Stage-1 map = 67%, reduce = 0%, Cumulative CPU 46.6 sec 2016-03-13 11:23:26,957 Stage-1 map = 69%, reduce = 0%, Cumulative CPU 53.89 sec 2016-03-13 11:23:30,204 Stage-1 map = 73%, reduce = 0%, Cumulative CPU 55.56 sec 2016-03-13 11:23:32,269 Stage-1 map = 80%, reduce = 0%, Cumulative CPU 56.56 sec 2016-03-13 11:23:35,356 Stage-1 map = 87%, reduce = 0%, Cumulative CPU 57.3 sec 2016-03-13 11:23:50,951 Stage-1 map = 89%, reduce = 0%, Cumulative CPU 62.5 sec 2016-03-13 11:23:51,977 Stage-1 map = 91%, reduce = 0%, Cumulative CPU 63.37 sec 2016-03-13 11:23:54,032 Stage-1 map = 92%, reduce = 0%, Cumulative CPU 63.52 sec 2016-03-13 11:23:55,053 Stage-1 map = 93%, reduce = 0%, Cumulative CPU 63.69 sec 2016-03-13 11:23:58,131 Stage-1 map = 94%, reduce = 0%, Cumulative CPU 64.0 sec 2016-03-13 11:24:00,172 Stage-1 map = 95%, reduce = 0%, Cumulative CPU 64.32 sec 2016-03-13 11:24:03,255 Stage-1 map = 96%, reduce = 0%, Cumulative CPU 64.59 sec 2016-03-13 11:24:06,351 Stage-1 map = 97%, reduce = 0%, Cumulative CPU 65.05 sec 2016-03-13 11:24:08,590 Stage-1 map = 98%, reduce = 0%, Cumulative CPU 65.28 sec 2016-03-13 11:24:11,687 Stage-1 map = 99%, reduce = 0%, Cumulative CPU 65.67 sec 2016-03-13 11:24:18,963 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 66.17 sec 2016-03-13 11:24:49,446 Stage-1 map = 100%, reduce = 24%, Cumulative CPU 69.83 sec 2016-03-13 11:24:50,461 Stage-1 map = 100%, reduce = 31%, Cumulative CPU 71.2 sec 2016-03-13 11:24:52,685 Stage-1 map = 100%, reduce = 40%, Cumulative CPU 72.16 sec 2016-03-13 11:24:53,716 Stage-1 map = 100%, reduce = 47%, Cumulative CPU 73.29 sec 2016-03-13 11:24:55,755 Stage-1 map = 100%, reduce = 53%, Cumulative CPU 73.96 sec 2016-03-13 11:25:09,145 Stage-1 map = 100%, reduce = 59%, Cumulative CPU 74.82 sec 2016-03-13 11:25:13,234 Stage-1 map = 100%, reduce = 60%, Cumulative CPU 79.95 sec 2016-03-13 11:25:14,267 Stage-1 map = 100%, reduce = 61%, Cumulative CPU 84.89 sec 2016-03-13 11:25:18,691 Stage-1 map = 100%, reduce = 62%, Cumulative CPU 86.7 sec 2016-03-13 11:25:19,725 Stage-1 map = 100%, reduce = 63%, Cumulative CPU 87.4 sec 2016-03-13 11:25:21,777 Stage-1 map = 100%, reduce = 65%, Cumulative CPU 88.1 sec 2016-03-13 11:25:22,801 Stage-1 map = 100%, reduce = 66%, Cumulative CPU 88.66 sec 2016-03-13 11:25:24,370 Stage-1 map = 100%, reduce = 69%, Cumulative CPU 90.07 sec 2016-03-13 11:25:25,806 Stage-1 map = 100%, reduce = 73%, Cumulative CPU 91.48 sec 2016-03-13 11:25:26,846 Stage-1 map = 100%, reduce = 74%, Cumulative CPU 92.05 sec 2016-03-13 11:25:27,899 Stage-1 map = 100%, reduce = 77%, Cumulative CPU 93.2 sec 2016-03-13 11:25:28,922 Stage-1 map = 100%, reduce = 79%, Cumulative CPU 93.57 sec 2016-03-13 11:25:32,045 Stage-1 map = 100%, reduce = 80%, Cumulative CPU 94.4 sec 2016-03-13 11:25:34,164 Stage-1 map = 100%, reduce = 82%, Cumulative CPU 95.36 sec 2016-03-13 11:25:37,297 Stage-1 map = 100%, reduce = 83%, Cumulative CPU 96.01 sec 2016-03-13 11:25:44,816 Stage-1 map = 100%, reduce = 85%, Cumulative CPU 97.26 sec 2016-03-13 11:25:55,122 Stage-1 map = 100%, reduce = 87%, Cumulative CPU 98.23 sec 2016-03-13 11:25:58,213 Stage-1 map = 100%, reduce = 93%, Cumulative CPU 99.1 sec 2016-03-13 11:26:01,270 Stage-1 map = 100%, reduce = 94%, Cumulative CPU 101.44 sec 2016-03-13 11:26:04,348 Stage-1 map = 100%, reduce = 97%, Cumulative CPU 103.83 sec 2016-03-13 11:26:06,427 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 104.88 sec MapReduce Total cumulative CPU time: 1 minutes 44 seconds 880 msec Ended Job = job_1457829749863_0008 Launching Job 2 out of 2 Number of reduce tasks determined at compile time: 1 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer=<number> In order to limit the maximum number of reducers: set hive.exec.reducers.max=<number> In order to set a constant number of reducers: set mapreduce.job.reduces=<number> Starting Job = job_1457829749863_0009, Tracking URL = http://master1:8088/proxy/application_1457829749863_0009/ Kill Command = /usr/local/hadoop/hadoop-2.6.0/bin/hadoop job -kill job_1457829749863_0009 Hadoop job information for Stage-2: number of mappers: 2; number of reducers: 1 2016-03-13 11:26:23,710 Stage-2 map = 0%, reduce = 0% 2016-03-13 11:26:44,247 Stage-2 map = 28%, reduce = 0%, Cumulative CPU 8.53 sec 2016-03-13 11:26:50,529 Stage-2 map = 57%, reduce = 0%, Cumulative CPU 13.83 sec 2016-03-13 11:26:53,648 Stage-2 map = 66%, reduce = 0%, Cumulative CPU 15.83 sec 2016-03-13 11:26:54,668 Stage-2 map = 72%, reduce = 0%, Cumulative CPU 16.36 sec 2016-03-13 11:26:56,719 Stage-2 map = 83%, reduce = 0%, Cumulative CPU 17.23 sec 2016-03-13 11:26:59,790 Stage-2 map = 93%, reduce = 0%, Cumulative CPU 18.65 sec 2016-03-13 11:27:02,862 Stage-2 map = 100%, reduce = 0%, Cumulative CPU 19.38 sec 2016-03-13 11:27:10,374 Stage-2 map = 100%, reduce = 17%, Cumulative CPU 20.61 sec 2016-03-13 11:27:13,444 Stage-2 map = 100%, reduce = 67%, Cumulative CPU 22.25 sec 2016-03-13 11:27:15,542 Stage-2 map = 100%, reduce = 100%, Cumulative CPU 24.15 sec MapReduce Total cumulative CPU time: 24 seconds 150 msec Ended Job = job_1457829749863_0009 MapReduce Jobs Launched: Stage-Stage-1: Map: 5 Reduce: 5 Cumulative CPU: 104.88 sec HDFS Read: 1147298011 HDFS Write: 297356296 SUCCESS Stage-Stage-2: Map: 2 Reduce: 1 Cumulative CPU: 24.15 sec HDFS Read: 297363766 HDFS Write: 140 SUCCESS Total MapReduce CPU Time Spent: 2 minutes 9 seconds 30 msec OK http://www.baidu.com/ 148348 http://www.4399.com/ 38611 http://www.youku.com/ 28959 http://www.hao123.com/ 28715 http://qzone.qq.com/ 26020 Time taken: 285.674 seconds, Fetched: 5 row(s)
4.统计一天中用户每个时间段搜索情况,并将结果存到临时表中;
drop table if exists tmp_pre_hour_seach_info; create table tmp_pre_hour_seach_info as select substring(id,9,2)as hour,count(*) as cnt from tbsogou where d='sogouq3' and substring(id,1,8)='20111230' group by substring(id,9,2); hive> drop table if exists tmp_pre_hour_seach_info; OK Time taken: 0.019 seconds hive> create table tmp_pre_hour_seach_info > as > select substring(id,9,2)as hour,count(*) as cnt from tbsogou where d='sogouq3' and substring(id,1,8)='20111230' group by substring(id,9,2); Query ID = root_20160313115133_bd005a7b-edf2-4c4c-a4c1-3b83c3d34335 Total jobs = 1 Launching Job 1 out of 1 Number of reduce tasks not specified. Estimated from input data size: 5 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer=<number> In order to limit the maximum number of reducers: set hive.exec.reducers.max=<number> In order to set a constant number of reducers: set mapreduce.job.reduces=<number> Starting Job = job_1457829749863_0015, Tracking URL = http://master1:8088/proxy/application_1457829749863_0015/ Kill Command = /usr/local/hadoop/hadoop-2.6.0/bin/hadoop job -kill job_1457829749863_0015 Hadoop job information for Stage-1: number of mappers: 5; number of reducers: 5 2016-03-13 11:51:41,275 Stage-1 map = 0%, reduce = 0% 2016-03-13 11:52:01,969 Stage-1 map = 7%, reduce = 0%, Cumulative CPU 13.69 sec 2016-03-13 11:52:03,000 Stage-1 map = 20%, reduce = 0%, Cumulative CPU 14.02 sec 2016-03-13 11:52:11,604 Stage-1 map = 27%, reduce = 0%, Cumulative CPU 28.14 sec 2016-03-13 11:52:13,801 Stage-1 map = 33%, reduce = 0%, Cumulative CPU 29.28 sec 2016-03-13 11:52:17,954 Stage-1 map = 60%, reduce = 1%, Cumulative CPU 33.8 sec 2016-03-13 11:52:19,522 Stage-1 map = 60%, reduce = 3%, Cumulative CPU 34.15 sec 2016-03-13 11:52:20,803 Stage-1 map = 67%, reduce = 3%, Cumulative CPU 35.55 sec 2016-03-13 11:52:22,921 Stage-1 map = 73%, reduce = 4%, Cumulative CPU 35.76 sec 2016-03-13 11:52:23,947 Stage-1 map = 73%, reduce = 5%, Cumulative CPU 37.26 sec 2016-03-13 11:52:25,437 Stage-1 map = 100%, reduce = 5%, Cumulative CPU 38.09 sec 2016-03-13 11:52:26,481 Stage-1 map = 100%, reduce = 7%, Cumulative CPU 38.15 sec 2016-03-13 11:52:27,553 Stage-1 map = 100%, reduce = 8%, Cumulative CPU 38.2 sec 2016-03-13 11:52:51,246 Stage-1 map = 100%, reduce = 11%, Cumulative CPU 38.85 sec 2016-03-13 11:52:53,288 Stage-1 map = 100%, reduce = 20%, Cumulative CPU 39.85 sec 2016-03-13 11:52:54,307 Stage-1 map = 100%, reduce = 40%, Cumulative CPU 41.77 sec 2016-03-13 11:52:59,424 Stage-1 map = 100%, reduce = 60%, Cumulative CPU 43.97 sec 2016-03-13 11:53:09,679 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 47.44 sec MapReduce Total cumulative CPU time: 47 seconds 440 msec Ended Job = job_1457829749863_0015 Moving data to: hdfs://master1:9000/user/hive/warehouse/testdb.db/tmp_pre_hour_seach_info Table testdb.tmp_pre_hour_seach_info stats: [numFiles=5, numRows=24, totalSize=234, rawDataSize=210] MapReduce Jobs Launched: Stage-Stage-1: Map: 5 Reduce: 5 Cumulative CPU: 47.44 sec HDFS Read: 1147301096 HDFS Write: 664 SUCCESS Total MapReduce CPU Time Spent: 47 seconds 440 msec OK Time taken: 98.72 seconds hive> select * from tmp_pre_hour_seach_info order by hour ; Query ID = root_20160313122830_a6be9cad-fc18-4c9e-9950-f6f97be0f996 Total jobs = 1 Launching Job 1 out of 1 Number of reduce tasks determined at compile time: 1 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer=<number> In order to limit the maximum number of reducers: set hive.exec.reducers.max=<number> In order to set a constant number of reducers: set mapreduce.job.reduces=<number> Starting Job = job_1457829749863_0016, Tracking URL = http://master1:8088/proxy/application_1457829749863_0016/ Kill Command = /usr/local/hadoop/hadoop-2.6.0/bin/hadoop job -kill job_1457829749863_0016 Hadoop job information for Stage-1: number of mappers: 2; number of reducers: 1 2016-03-13 12:28:38,814 Stage-1 map = 0%, reduce = 0% 2016-03-13 12:28:50,158 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 2.48 sec 2016-03-13 12:28:57,412 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 3.87 sec MapReduce Total cumulative CPU time: 3 seconds 870 msec Ended Job = job_1457829749863_0016 MapReduce Jobs Launched: Stage-Stage-1: Map: 2 Reduce: 1 Cumulative CPU: 3.87 sec HDFS Read: 9717 HDFS Write: 234 SUCCESS Total MapReduce CPU Time Spent: 3 seconds 870 msec OK 00 167799 01 121494 02 85056 03 63484 04 52604 05 51630 06 61241 07 97949 08 307308 09 516763 10 612179 11 597820 12 595252 13 623990 14 614563 15 640062 16 636304 17 581630 18 591573 19 682096 20 707056 21 659366 22 542951 23 389667 Time taken: 27.597 seconds, Fetched: 24 row(s)
5.统计用户每个时段搜索所在比例;
hive> select hour,cnt/total from tmp_pre_hour_seach_info a join (select sum(cnt)total from tmp_pre_hour_seach_info) b where 1=1 order by hour; Warning: Map Join MAPJOIN[19][bigTable=?] in task 'Stage-3:MAPRED' is a cross product Query ID = root_20160313123951_9afbb68b-d07b-49e8-bd90-c2a362133d89 Total jobs = 2 Launching Job 1 out of 2 Number of reduce tasks determined at compile time: 1 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer=<number> In order to limit the maximum number of reducers: set hive.exec.reducers.max=<number> In order to set a constant number of reducers: set mapreduce.job.reduces=<number> Starting Job = job_1457829749863_0022, Tracking URL = http://master1:8088/proxy/application_1457829749863_0022/ Kill Command = /usr/local/hadoop/hadoop-2.6.0/bin/hadoop job -kill job_1457829749863_0022 Hadoop job information for Stage-1: number of mappers: 2; number of reducers: 1 2016-03-13 12:39:58,777 Stage-1 map = 0%, reduce = 0% 2016-03-13 12:40:10,073 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 2.3 sec 2016-03-13 12:40:17,294 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 3.48 sec MapReduce Total cumulative CPU time: 3 seconds 480 msec Ended Job = job_1457829749863_0022 SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/usr/local/hadoop/hadoop-2.6.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/usr/local/spark/spark-1.6.0-bin-hadoop2.6/lib/spark-assembly-1.6.0-hadoop2.6.0.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] 16/03/13 12:40:21 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Execution log at: /tmp/root/root_20160313123951_9afbb68b-d07b-49e8-bd90-c2a362133d89.log 2016-03-13 12:40:22 Starting to launch local task to process map join; maximum memory = 518979584 2016-03-13 12:40:23 Dump the side-table for tag: 0 with group count: 1 into file: file:/tmp/root/94a0f21c-473d-4ff2-8d73-5a286929f3ec/hive_2016-03-13_12-39-51_816_7328192251576208367-1/-local-10005/HashTable-Stage-3/MapJoin-mapfile10--.hashtable 2016-03-13 12:40:24 Uploaded 1 File to: file:/tmp/root/94a0f21c-473d-4ff2-8d73-5a286929f3ec/hive_2016-03-13_12-39-51_816_7328192251576208367-1/-local-10005/HashTable-Stage-3/MapJoin-mapfile10--.hashtable (559 bytes) 2016-03-13 12:40:24 End of local task; Time Taken: 1.176 sec. Execution completed successfully MapredLocal task succeeded Launching Job 2 out of 2 Number of reduce tasks determined at compile time: 1 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer=<number> In order to limit the maximum number of reducers: set hive.exec.reducers.max=<number> In order to set a constant number of reducers: set mapreduce.job.reduces=<number> Starting Job = job_1457829749863_0023, Tracking URL = http://master1:8088/proxy/application_1457829749863_0023/ Kill Command = /usr/local/hadoop/hadoop-2.6.0/bin/hadoop job -kill job_1457829749863_0023 Hadoop job information for Stage-3: number of mappers: 1; number of reducers: 1 2016-03-13 12:40:32,128 Stage-3 map = 0%, reduce = 0% 2016-03-13 12:40:39,379 Stage-3 map = 100%, reduce = 0%, Cumulative CPU 1.54 sec 2016-03-13 12:40:46,562 Stage-3 map = 100%, reduce = 100%, Cumulative CPU 2.98 sec MapReduce Total cumulative CPU time: 2 seconds 980 msec Ended Job = job_1457829749863_0023 MapReduce Jobs Launched: Stage-Stage-1: Map: 2 Reduce: 1 Cumulative CPU: 3.48 sec HDFS Read: 10788 HDFS Write: 117 SUCCESS Stage-Stage-3: Map: 1 Reduce: 1 Cumulative CPU: 2.98 sec HDFS Read: 10776 HDFS Write: 556 SUCCESS Total MapReduce CPU Time Spent: 6 seconds 460 msec OK 00 0.016780173516828326 01 0.012149598038448027 02 0.00850573864353989 03 0.006348503480606734 04 0.005260485745917659 05 0.0051630841582717794 06 0.006124199824457138 07 0.009795059659472449 08 0.030731300920205 09 0.0516771423374201 10 0.06121889786803525 11 0.05978297446248374 12 0.05952617027657551 13 0.06240001712027906 14 0.06145730175401859 15 0.06400724331806608 16 0.06363143719242624 17 0.05816394807235358 18 0.05915826427970776 19 0.06821071183460291 20 0.07070675252006607 21 0.06593767478409898 22 0.0542959850245559 23 0.03896733516756323 Time taken: 55.825 seconds, Fetched: 24 row(s)
发表评论
-
Spark SQL内置函数应用
2016-04-22 07:00 8701简单说明 使用Spark SQL中的内置函数对数据进行 ... -
Spark SQL操作Hive数据库
2016-04-13 22:37 17665本次例子通过scala编程实现Spark SQL操作Hive数 ... -
Spark SQL on hive配置和实战
2016-03-26 18:40 5623spark sql 官网:http://spark ... -
Hive使用默认数据库derby报错及解决方法
2016-03-05 21:19 3213在使用derby数据库时,遇到了很多错误,报错信息和解决方法如 ... -
Hive1.2.1安装和使用(基于Hadoop2.6.0)
2016-03-05 20:22 8925安装hive,这里使用mysql作为hive的metastor ... -
hive第一个字段为null
2014-03-20 23:17 1455在hive中创建表后,将准备好的数据导入到该表中,如果第一个字 ...
相关推荐
内容概要:本文详细介绍了基于MATLAB GUI界面和卷积神经网络(CNN)的模糊车牌识别系统。该系统旨在解决现实中车牌因模糊不清导致识别困难的问题。文中阐述了整个流程的关键步骤,包括图像的模糊还原、灰度化、阈值化、边缘检测、孔洞填充、形态学操作、滤波操作、车牌定位、字符分割以及最终的字符识别。通过使用维纳滤波或最小二乘法约束滤波进行模糊还原,再利用CNN的强大特征提取能力完成字符分类。此外,还特别强调了MATLAB GUI界面的设计,使得用户能直观便捷地操作整个系统。 适合人群:对图像处理和深度学习感兴趣的科研人员、高校学生及从事相关领域的工程师。 使用场景及目标:适用于交通管理、智能停车场等领域,用于提升车牌识别的准确性和效率,特别是在面对模糊车牌时的表现。 其他说明:文中提供了部分关键代码片段作为参考,并对实验结果进行了详细的分析,展示了系统在不同环境下的表现情况及其潜在的应用前景。
嵌入式八股文面试题库资料知识宝典-计算机专业试题.zip
嵌入式八股文面试题库资料知识宝典-C and C++ normal interview_3.zip
内容概要:本文深入探讨了一款额定功率为4kW的开关磁阻电机,详细介绍了其性能参数如额定功率、转速、效率、输出转矩和脉动率等。同时,文章还展示了利用RMxprt、Maxwell 2D和3D模型对该电机进行仿真的方法和技术,通过外电路分析进一步研究其电气性能和动态响应特性。最后,文章提供了基于RMxprt模型的MATLAB仿真代码示例,帮助读者理解电机的工作原理及其性能特点。 适合人群:从事电机设计、工业自动化领域的工程师和技术人员,尤其是对开关磁阻电机感兴趣的科研工作者。 使用场景及目标:适用于希望深入了解开关磁阻电机特性和建模技术的研究人员,在新产品开发或现有产品改进时作为参考资料。 其他说明:文中提供的代码示例仅用于演示目的,实际操作时需根据所用软件的具体情况进行适当修改。
少儿编程scratch项目源代码文件案例素材-剑客冲刺.zip
少儿编程scratch项目源代码文件案例素材-几何冲刺 转瞬即逝.zip
内容概要:本文详细介绍了基于PID控制器的四象限直流电机速度驱动控制系统仿真模型及其永磁直流电机(PMDC)转速控制模型。首先阐述了PID控制器的工作原理,即通过对系统误差的比例、积分和微分运算来调整电机的驱动信号,从而实现转速的精确控制。接着讨论了如何利用PID控制器使有刷PMDC电机在四个象限中精确跟踪参考速度,并展示了仿真模型在应对快速负载扰动时的有效性和稳定性。最后,提供了Simulink仿真模型和详细的Word模型说明文档,帮助读者理解和调整PID控制器参数,以达到最佳控制效果。 适合人群:从事电力电子与电机控制领域的研究人员和技术人员,尤其是对四象限直流电机速度驱动控制系统感兴趣的读者。 使用场景及目标:适用于需要深入了解和掌握四象限直流电机速度驱动控制系统设计与实现的研究人员和技术人员。目标是在实际项目中能够运用PID控制器实现电机转速的精确控制,并提高系统的稳定性和抗干扰能力。 其他说明:文中引用了多篇相关领域的权威文献,确保了理论依据的可靠性和实用性。此外,提供的Simulink模型和Word文档有助于读者更好地理解和实践所介绍的内容。
嵌入式八股文面试题库资料知识宝典-2013年海康威视校园招聘嵌入式开发笔试题.zip
少儿编程scratch项目源代码文件案例素材-驾驶通关.zip
小区开放对周边道路通行能力影响的研究.pdf
内容概要:本文探讨了冷链物流车辆路径优化问题,特别是如何通过NSGA-2遗传算法和软硬时间窗策略来实现高效、环保和高客户满意度的路径规划。文中介绍了冷链物流的特点及其重要性,提出了软时间窗概念,允许一定的配送时间弹性,同时考虑碳排放成本,以达到绿色物流的目的。此外,还讨论了如何将客户满意度作为路径优化的重要评价标准之一。最后,通过一段简化的Python代码展示了遗传算法的应用。 适合人群:从事物流管理、冷链物流运营的专业人士,以及对遗传算法和路径优化感兴趣的科研人员和技术开发者。 使用场景及目标:适用于冷链物流企业,旨在优化配送路线,降低运营成本,减少碳排放,提升客户满意度。目标是帮助企业实现绿色、高效的物流配送系统。 其他说明:文中提供的代码仅为示意,实际应用需根据具体情况调整参数设置和模型构建。
少儿编程scratch项目源代码文件案例素材-恐怖矿井.zip
内容概要:本文详细介绍了基于STM32F030的无刷电机控制方案,重点在于高压FOC(磁场定向控制)技术和滑膜无感FOC的应用。该方案实现了过载、过欠压、堵转等多种保护机制,并提供了完整的源码、原理图和PCB设计。文中展示了关键代码片段,如滑膜观测器和电流环处理,以及保护机制的具体实现方法。此外,还提到了方案的移植要点和实际测试效果,确保系统的稳定性和高效性。 适合人群:嵌入式系统开发者、电机控制系统工程师、硬件工程师。 使用场景及目标:适用于需要高性能无刷电机控制的应用场景,如工业自动化设备、无人机、电动工具等。目标是提供一种成熟的、经过验证的无刷电机控制方案,帮助开发者快速实现并优化电机控制性能。 其他说明:提供的资料包括详细的原理图、PCB设计文件、源码及测试视频,方便开发者进行学习和应用。
基于有限体积法Godunov格式的管道泄漏检测模型研究.pdf
嵌入式八股文面试题库资料知识宝典-CC++笔试题-深圳有为(2019.2.28)1.zip
少儿编程scratch项目源代码文件案例素材-几何冲刺 V1.5.zip
Android系统开发_Linux内核配置_USB-HID设备模拟_通过root权限将Android设备转换为全功能USB键盘的项目实现_该项目需要内核支持configFS文件系统
C# WPF - LiveCharts Project
少儿编程scratch项目源代码文件案例素材-恐怖叉子 动画.zip
嵌入式八股文面试题库资料知识宝典-嵌⼊式⼯程师⾯试⾼频问题.zip