`
Kevin12
  • 浏览: 235463 次
  • 性别: Icon_minigender_1
  • 来自: 上海
社区版块
存档分类
最新评论

eclipse开发hadoop环境搭建

阅读更多
Hadoop2.6.0集群搭建完毕后,下面介绍一下eclipse是如何开发hadoop程序(即MapReduce程序)的。
1.jdk安装hadoop集群的搭建,不再详述,参考http://kevin12.iteye.com/blog/2273556
下面运行下hadoop自带的wordcount例子:
2.先将hadoop-2.6.0目录下面的README.txt和LICENSE.txt文件put到集群的/library/hadoop/data目录下面,如果目录不存在先创建;
root@master1:/usr/local/hadoop/hadoop-2.6.0# hdfs dfs -mkdir /library/hadoop/data
root@master1:/usr/local/hadoop/hadoop-2.6.0# hdfs dfs -put ./LICENSE.txt /library/hadoop/data
root@master1:/usr/local/hadoop/hadoop-2.6.0# hdfs dfs -put ./README.txt /library/hadoop/data
root@master1:/usr/local/hadoop/hadoop-2.6.0/share/hadoop/mapreduce# hadoop jar hadoop-mapreduce-examples-2.6.0.jar wordcount /library/hadoop/data /library/hadoop/wordcount_output1
16/02/12 12:49:06 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
16/02/12 12:49:07 INFO client.RMProxy: Connecting to ResourceManager at master1/192.168.112.130:8032
16/02/12 12:49:08 INFO input.FileInputFormat: Total input paths to process : 2
16/02/12 12:49:08 INFO mapreduce.JobSubmitter: number of splits:2
16/02/12 12:49:08 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1455236431298_0002
16/02/12 12:49:09 INFO impl.YarnClientImpl: Submitted application application_1455236431298_0002
16/02/12 12:49:09 INFO mapreduce.Job: The url to track the job: http://master1:8088/proxy/application_1455236431298_0002/
16/02/12 12:49:09 INFO mapreduce.Job: Running job: job_1455236431298_0002
16/02/12 12:49:20 INFO mapreduce.Job: Job job_1455236431298_0002 running in uber mode : false
16/02/12 12:49:20 INFO mapreduce.Job:  map 0% reduce 0%
16/02/12 12:49:30 INFO mapreduce.Job:  map 100% reduce 0%
16/02/12 12:49:42 INFO mapreduce.Job:  map 100% reduce 100%
16/02/12 12:49:42 INFO mapreduce.Job: Job job_1455236431298_0002 completed successfully
16/02/12 12:49:43 INFO mapreduce.Job: Counters: 49
    File System Counters
        FILE: Number of bytes read=12822
        FILE: Number of bytes written=342551
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=17026
        HDFS: Number of bytes written=8943
        HDFS: Number of read operations=9
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=2
    Job Counters 
        Launched map tasks=2
        Launched reduce tasks=1
        Data-local map tasks=2
        Total time spent by all maps in occupied slots (ms)=17371
        Total time spent by all reduces in occupied slots (ms)=7667
        Total time spent by all map tasks (ms)=17371
        Total time spent by all reduce tasks (ms)=7667
        Total vcore-seconds taken by all map tasks=17371
        Total vcore-seconds taken by all reduce tasks=7667
        Total megabyte-seconds taken by all map tasks=17787904
        Total megabyte-seconds taken by all reduce tasks=7851008
    Map-Reduce Framework
        Map input records=320
        Map output records=2336
        Map output bytes=24790
        Map output materialized bytes=12828
        Input split bytes=231
        Combine input records=2336
        Combine output records=886
        Reduce input groups=838
        Reduce shuffle bytes=12828
        Reduce input records=886
        Reduce output records=838
        Spilled Records=1772
        Shuffled Maps =2
        Failed Shuffles=0
        Merged Map outputs=2
        GC time elapsed (ms)=526
        CPU time spent (ms)=2190
        Physical memory (bytes) snapshot=476704768
        Virtual memory (bytes) snapshot=5660733440
        Total committed heap usage (bytes)=260173824
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters 
        Bytes Read=16795
    File Output Format Counters 
        Bytes Written=8943
#查看结果,这里只截取一部分内容:
root@master1:/usr/local/hadoop/hadoop-2.6.0/share/hadoop/mapreduce# hdfs dfs -cat /library/hadoop/wordcount_output1/part-r-00000
16/02/12 12:51:33 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
"AS    4
"Contribution"    1
"Contributor"    1
"Derivative    1
"Legal    1
"License"    1
"License");    1
"Licensor"    1
"NOTICE"    1
"Not    1
"Object"    1
"Source"    1
"Work"    1
"You"    1
"Your")    1
"[]"    1
"control"    1
"printed    1
"submitted"    1

也可以通过浏览器查看文件内容,将/library/hadoop/wordcount_output1目录下面的part-r-00000文件下载打开查看即可:

3.下载eclipse liunx版64位的,直接去eclipse官网下载,不再详述;
4.将下载好的eclipse解压到/usr/local/目录下面,进入eclipse目录,执行eclipse,打开eclipse,工作空间选择默认(/root/workspace)即可。
5.本地开发hadoop程序调试运行需要hadoop-eclipse-plugin-2.6.0.jar,将该jar包拷贝到/usr/local/eclipse目录下面的plugins目录下面。在eclipse中选择File->restart重启eclipse,重启打开后选择Window->Show View->Other选中MapReduceTools下面的Map/Reduce Locations并将点击OK。



6.创建Hadoop Location,在下面的Map/Reduce Locations中新建一个Hadoop location,配置好Host和Port后保存,选择Java EE的浏览方式,在Project Explorer下面就可以看到DFS Loations,并且显示了集群的根目录文件信息。






7.指定hadoop的安装目录,选择Window->Preferences->Data Management选中Hadoop Map/Reduce在右面的页签中点击“Browse..."按钮,选择hadoop的安装目录,然后点击Apply,并保存退出。


8.创建项目,点击File->New->Other,在弹出框中选择Map/Reduce Project.点击Next,填写项目名称,点击Finish,在弹出框中选择ok,eclipse自动会将hadoop安装目录下的架包引用进来,这样我们就可以开发MapReduce程序了。









9.关联源码.
首先将hadoop-2.6.0-src.tar.gz拷贝到虚拟机中并解压到/usr/local/hadoop目录下,并用tar命令解压缩;
再按Shift+Ctrl+T组合键,在弹出框中输入NameNode选择Hadoop的NamedNodeMap,在class页签中点击Attach Source,在弹出的对话框中选择External location,并点击Extenal Folder按钮选择刚才解压缩的源码hadoop-2.6.0-src,点击OK就可以关联上源码了。






10.运行WordCount例子
解压缩源码,在hadoop-2.6.0-src\hadoop-mapreduce-project\hadoop-mapreduce-examples\src\main\java\org\apache\hadoop\examples中找到WordCount.java文件,拷贝到HadoopApps的com.imf.hadoop包中(如果包不存在先创建);
WordCount源码如下:
/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.imf.hadoop;

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount {

	public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {

		private final static IntWritable one = new IntWritable(1);
		private Text word = new Text();

		public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
			StringTokenizer itr = new StringTokenizer(value.toString());
			while (itr.hasMoreTokens()) {
				word.set(itr.nextToken());
				context.write(word, one);
			}
		}
	}

	public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
		private IntWritable result = new IntWritable();

		public void reduce(Text key, Iterable<IntWritable> values, Context context)
				throws IOException, InterruptedException {
			int sum = 0;
			for (IntWritable val : values) {
				sum += val.get();
			}
			result.set(sum);
			context.write(key, result);
		}
	}

	public static void main(String[] args) throws Exception {
		Configuration conf = new Configuration();
		String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
		if (otherArgs.length < 2) {
			System.err.println("Usage: wordcount <in> [<in>...] <out>");
			System.exit(2);
		}
		Job job = new Job(conf, "word count");
		job.setJarByClass(WordCount.class);
		job.setMapperClass(TokenizerMapper.class);
		job.setCombinerClass(IntSumReducer.class);
		job.setReducerClass(IntSumReducer.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);
		for (int i = 0; i < otherArgs.length - 1; ++i) {
			FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
		}
		FileOutputFormat.setOutputPath(job, new Path(otherArgs[otherArgs.length - 1]));
		System.exit(job.waitForCompletion(true) ? 0 : 1);
	}
}

然后选择WordCount右键->Run As->Run Configruations,在Java Application中选择WordCount在右面的页签中配置Arguments的Program arguments参数如下:hdfs://master1:9000/library/hadoop/data hdfs://master1:9000/library/hadoop/wordcount_output1,点击Apply,并点击Run按钮运行。


11.查看结果:在浏览器中查看会发现输出目录中会多出part-r-00000文件,这个就是我们统计的结果,也可以用命令hdfs dfs -cat /library/hadoop/wordcount_output1/part-r-00000查看。
注意,如果输出目录已经存在则运行会报错,可以更改一个目录或者删除该目录再次运行即可;



12.下面将WordCount打包成jar文件在集群中运行。
右键HadoopApps选择Export,再弹出框中选择jar文件,点击Next,然后选择jar文件输出的目录,我输出的位置是/usr/local/tools 文件名称为HadoopApps.jar,然后一路Next即可。
注意:在最后一步不指定主函数,而是在运行jar包时进行指定,因为这样做有助于测试其他项目。




13.运行jar文件
root@master1:/usr/local/tools# hadoop jar HadoopApps.jar com.imf.hadoop.WordCount hdfs://master1:9000/library/hadoop/data/ hdfs://master1:9000/library/hadoop/wordcount_output2
16/02/13 14:36:58 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
16/02/13 14:36:59 INFO client.RMProxy: Connecting to ResourceManager at master1/192.168.112.130:8032
16/02/13 14:37:00 INFO input.FileInputFormat: Total input paths to process : 2
16/02/13 14:37:00 INFO mapreduce.JobSubmitter: number of splits:2
16/02/13 14:37:01 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1455315784285_0004
16/02/13 14:37:01 INFO impl.YarnClientImpl: Submitted application application_1455315784285_0004
16/02/13 14:37:01 INFO mapreduce.Job: The url to track the job: http://master1:8088/proxy/application_1455315784285_0004/
16/02/13 14:37:01 INFO mapreduce.Job: Running job: job_1455315784285_0004
16/02/13 14:37:08 INFO mapreduce.Job: Job job_1455315784285_0004 running in uber mode : false
16/02/13 14:37:08 INFO mapreduce.Job:  map 0% reduce 0%
16/02/13 14:37:19 INFO mapreduce.Job:  map 100% reduce 0%
16/02/13 14:37:26 INFO mapreduce.Job:  map 100% reduce 100%
16/02/13 14:37:27 INFO mapreduce.Job: Job job_1455315784285_0004 completed successfully
16/02/13 14:37:28 INFO mapreduce.Job: Counters: 49
    File System Counters
        FILE: Number of bytes read=12822
        FILE: Number of bytes written=342443
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=17026
        HDFS: Number of bytes written=8943
        HDFS: Number of read operations=9
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=2
    Job Counters 
        Launched map tasks=2
        Launched reduce tasks=1
        Data-local map tasks=2
        Total time spent by all maps in occupied slots (ms)=17479
        Total time spent by all reduces in occupied slots (ms)=4161
        Total time spent by all map tasks (ms)=17479
        Total time spent by all reduce tasks (ms)=4161
        Total vcore-seconds taken by all map tasks=17479
        Total vcore-seconds taken by all reduce tasks=4161
        Total megabyte-seconds taken by all map tasks=17898496
        Total megabyte-seconds taken by all reduce tasks=4260864
    Map-Reduce Framework
        Map input records=320
        Map output records=2336
        Map output bytes=24790
        Map output materialized bytes=12828
        Input split bytes=231
        Combine input records=2336
        Combine output records=886
        Reduce input groups=838
        Reduce shuffle bytes=12828
        Reduce input records=886
        Reduce output records=838
        Spilled Records=1772
        Shuffled Maps =2
        Failed Shuffles=0
        Merged Map outputs=2
        GC time elapsed (ms)=387
        CPU time spent (ms)=2030
        Physical memory (bytes) snapshot=483635200
        Virtual memory (bytes) snapshot=5660704768
        Total committed heap usage (bytes)=259067904
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters 
        Bytes Read=16795
    File Output Format Counters 
        Bytes Written=8943

打开浏览器,点击part-r-00000下载并查看:





两次运行结果进行比较,结果是一样的。

  • 大小: 37 KB
  • 大小: 28 KB
  • 大小: 21.3 KB
  • 大小: 55.6 KB
  • 大小: 90.8 KB
  • 大小: 55.4 KB
  • 大小: 44.8 KB
  • 大小: 55.5 KB
  • 大小: 71.9 KB
  • 大小: 92 KB
  • 大小: 56.8 KB
  • 大小: 30.1 KB
  • 大小: 40.7 KB
  • 大小: 100.8 KB
  • 大小: 17 KB
  • 大小: 42.4 KB
  • 大小: 67.8 KB
  • 大小: 79.6 KB
  • 大小: 52.4 KB
分享到:
评论

相关推荐

    hadoop环境搭建和eclipse开发

    hadoop环境搭建和eclipse开发

    hadoop开发环境搭建

    HadoopEclipse插件是专为Eclipse开发环境设计的插件,它将Hadoop类库集成到Eclipse中,使得开发者可以在一个图形化的界面中编写、调试和运行Hadoop程序。该插件的主要特点包括: - **简化开发流程**:通过自动化...

    eclipse安装Hadoop插件

    ### Eclipse安装Hadoop插件详解 #### 一、前言 随着大数据技术的快速发展,Hadoop作为处理海量数据的重要工具之一,其应用越来越广泛。...希望本指南能够帮助您顺利完成Eclipse上的Hadoop开发环境搭建工作。

    Hadoop2.0开发环境搭建

    涉及到了Hadoop2.0、Hbase、Sqoop、Flume、Hive、Zookeeper的具体环境搭建

    eclipse搭建hadoop-3.1.2所需插件.rar

    在大数据编程领域,Eclipse作为一个强大的集成开发环境(IDE)被广泛用于开发Hadoop相关的项目。Hadoop是一个开源框架,主要用于处理和存储大规模数据,而Eclipse通过安装特定的插件可以提供对Hadoop开发的良好支持...

    hadoop搭建与eclipse开发环境设置

    目的很简单,为进行研究与学习,部署一个hadoop运行环境,并搭建一个hadoop开发与测试环境。 具体目标是: 1.在ubuntu系统上部署hadoop 2.在windows 上能够使用eclipse连接ubuntu系统上部署的hadoop进行开发与测试 3...

    win7下Eclipse开发Hadoop应用程序环境搭建

    在Windows 7操作系统中,使用Eclipse开发Hadoop应用程序的过程涉及多个步骤,涵盖了从环境配置到实际编程的各个层面。以下是对这个主题的详细讲解: 首先,我们需要了解Hadoop和Eclipse的基础。Hadoop是一个开源的...

    cygwin+eclipse搭建hadoop开发环境,运行wordcount

    接下来,"Cygwin+Eclipse搭建Hadoop开发环境"文档将指导你如何配置Eclipse IDE,使其能够与Cygwin集成,用于Hadoop项目开发。Eclipse是Java开发者常用的一款强大IDE,它提供了丰富的插件支持,包括Hadoop开发插件,...

    Eclipse搭建Hadoop3.1.0开发环境需要的插件

    Eclipse搭建Hadoop3.1.0开发环境需要的插件,下载直接放在eclipse\plugins\目录下,重启Eclipse即可。

    Windows7 x64+Eclipse+Hadoop 2.5.2搭建MapReduce开发集群相关工具下载

    在Windows7 x64 + Eclipse + Hadoop 2.5.2搭建MapReduce开发环境,下载的文件中包括下载的文件包括:hadoop 2.5.2.tar.gz,hadoop-common-2.2.0-bin-master.zip,hadoop-eclipse-plugin-2.5.2.jar。应用这些软件的...

    Cygwin+Eclipse搭建Hadoop单机开发环境-1

    在本文中,我们将深入探讨如何使用Cygwin和Eclipse搭建Hadoop的单机开发环境。Cygwin是一个为Windows操作系统提供Linux-like环境的开源工具,而Eclipse是一款流行的集成开发环境(IDE),广泛用于Java应用程序的开发...

    Cygwin+Eclipse搭建Hadoop单机开发环境-2

    在本教程中,我们将深入探讨如何使用Cygwin和Eclipse搭建Hadoop的单机开发环境,这将有助于你理解Hadoop的基础知识以及如何在Windows操作系统上进行开发和测试。Cygwin是一个在Windows上模拟Linux环境的工具,它允许...

    Hadoop-Eclipse开发环境配置经验

    在介绍Hadoop-Eclipse开发环境配置之前,我们首先要了解Hadoop和Eclipse的基本概念。Hadoop是一个由Apache基金会开发的开源框架,能够支持在普通硬件上运行的分布式应用。它旨在从单一服务器扩展到数千台机器上,...

    Cygwin+Eclipse搭建Hadoop单机开发环境-3

    在本教程中,我们将深入探讨如何使用Cygwin和Eclipse搭建Hadoop的单机开发环境,以便在Windows操作系统上进行高效的数据处理和分析。Cygwin是一个提供Linux-like环境的开源工具集,使得Windows用户可以运行原本为...

    hadoop搭建与eclipse开发环境设置.docx

    Hadoop搭建与Eclipse开发环境设置 TITLE:Hadoop搭建与Eclipse开发环境设置 DESCRIPTION:本文将指导读者如何在Ubuntu系统上搭建Hadoop环境,并在Windows上使用Eclipse连接Ubuntu系统上的Hadoop环境进行开发和...

    基于eclipse的hadoop应用开发

    本文主要介绍了如何在Eclipse环境下搭建Hadoop开发环境,并通过一个典型的WordCount程序演示整个流程。 #### 一、准备工作:配置Hadoop开发环境 1. **下载并安装Eclipse** 首先需要确保已经安装了Eclipse IDE,...

    window7+eclipse4.7+Hadoop2.9.0环境搭建所需的全套插件及文档

    "windows 下 eclipse 开发 hdfs程序.docx"是一份详细的文档,指导如何在Windows环境下使用Eclipse开发HDFS程序。遵循文档中的步骤,你可以配置Eclipse的Java项目,设置Hadoop的本地路径,以及创建和运行MapReduce...

    eclipse-hadoop3x-master.zip

    综上所述,这个压缩包"eclipse-hadoop3x-master.zip"是一个关于在Eclipse中开发Hadoop 3.x应用的资源集合。用户可以导入此项目到Eclipse中,然后利用其中的配置和源代码开始编写、测试和部署Hadoop应用程序。它涵盖...

Global site tag (gtag.js) - Google Analytics