Hive进行UDF开发十分简单,此处所说UDF为Temporary的function,所以需要hive版本在0.4.0以上才可以。
一、背景:Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
a)文件格式:Text File,Sequence File
b)内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
c)用户提供的 map/reduce 脚本:不管什么语言,利用 stdin/stdout 传输数据
d)用户自定义函数: Substr, Trim, 1 – 1
e)用户自定义聚合函数: Sum, Average…… n – 1
2、定义:UDF(User-Defined-Function),用户自定义函数对数据进行处理。
二、用法
1、UDF函数可以直接应用于select语句,对查询结构做格式化处理后,再输出内容。
2、编写UDF函数的时候需要注意一下几点:
a)自定义UDF需要继承org.apache.hadoop.hive.ql.UDF。
b)需要实现evaluate函。
c)evaluate函数支持重载。
3、以下是两个数求和函数的UDF。evaluate函数代表两个整型数据相加,两个浮点型数据相加,可变长数据相加
Hive的UDF开发只需要重构UDF类的evaluate函数即可。例:
package hive.connect;
import org.apache.hadoop.hive.ql.exec.UDF;
public final class Add extends UDF {
public Integer evaluate(Integer a, Integer b) {
if (null == a || null == b) {
return null;
} return a + b;
}
public Double evaluate(Double a, Double b) {
if (a == null || b == null)
return null;
return a + b;
}
public Integer evaluate(Integer... a) {
int total = 0;
for (int i = 0; i < a.length; i++)
if (a[i] != null)
total += a[i];
return total;
}
}
4、步骤
a)把程序打包放到目标机器上去;
b)进入hive客户端,添加jar包:hive>add jar /run/jar/udf_test.jar;
c)创建临时函数:hive>CREATE TEMPORARY FUNCTION add_example AS 'hive.udf.Add';
d)查询HQL语句:
SELECT add_example(8, 9) FROM scores;
SELECT add_example(scores.math, scores.art) FROM scores;
SELECT add_example(6, 7, 8, 6.8) FROM scores;
e)销毁临时函数:hive> DROP TEMPORARY FUNCTION add_example;
5、细节在使用UDF的时候,会自动进行类型转换,例如:
SELECT add_example(8,9.1) FROM scores;
注:
1. UDF只能实现一进一出的操作,如果需要实现多进一出,则需要实现UDAF
下面来看下UDAF:
(二)、UDAF
1、Hive查询数据时,有些聚类函数在HQL没有自带,需要用户自定义实现。
2、用户自定义聚合函数: Sum, Average…… n – 1
UDAF(User- Defined Aggregation Funcation)
一、用法
1、一下两个包是必须的import org.apache.hadoop.hive.ql.exec.UDAF和 org.apache.hadoop.hive.ql.exec.UDAFEvaluator。
2、函数类需要继承UDAF类,内部类Evaluator实UDAFEvaluator接口。
3、Evaluator需要实现 init、iterate、terminatePartial、merge、terminate这几个函数。
a)init函数实现接口UDAFEvaluator的init函数。
b)iterate接收传入的参数,并进行内部的轮转。其返回类型为boolean。
c)terminatePartial无参数,其为iterate函数轮转结束后,返回轮转数据,terminatePartial类似于hadoop的Combiner。
d)merge接收terminatePartial的返回结果,进行数据merge操作,其返回类型为boolean。
e)terminate返回最终的聚集函数结果。
package hive.udaf;
import org.apache.hadoop.hive.ql.exec.UDAF;
import org.apache.hadoop.hive.ql.exec.UDAFEvaluator;
public class Avg extends UDAF {
public static class AvgState {
private long mCount;
private double mSum;
}
public static class AvgEvaluator implements UDAFEvaluator {
AvgState state;
public AvgEvaluator() {
super();
state = new AvgState();
init();
}
/** * init函数类似于构造函数,用于UDAF的初始化 */
public void init() {
state.mSum = 0;
state.mCount = 0;
}
/** * iterate接收传入的参数,并进行内部的轮转。其返回类型为boolean * * @param o * @return */
public boolean iterate(Double o) {
if (o != null) {
state.mSum += o;
state.mCount++;
} return true;
}
/** * terminatePartial无参数,其为iterate函数轮转结束后,返回轮转数据, * terminatePartial类似于hadoop的Combiner * * @return */
public AvgState terminatePartial() {
// combiner
return state.mCount == 0 ? null : state;
}
/** * merge接收terminatePartial的返回结果,进行数据merge操作,其返回类型为boolean * * @param o * @return */
public boolean terminatePartial(Double o) {
if (o != null) {
state.mCount += o.mCount;
state.mSum += o.mSum;
}
return true;
}
/** * terminate返回最终的聚集函数结果 * * @return */
public Double terminate() {
return state.mCount == 0 ? null : Double.valueOf(state.mSum / state.mCount);
}
}
5、执行求平均数函数的步骤
a)将java文件编译成Avg_test.jar。
b)进入hive客户端添加jar包:
hive>add jar /run/jar/Avg_test.jar。
c)创建临时函数:
hive>create temporary function avg_test 'hive.udaf.Avg';
d)查询语句:
hive>select avg_test(scores.math) from scores;
e)销毁临时函数:
hive>drop temporary function avg_test;
五、总结
1、重载evaluate函数。
2、UDF函数中参数类型可以为Writable,也可为java中的基本数据对象。
3、UDF支持变长的参数。
4、Hive支持隐式类型转换。
5、客户端退出时,创建的临时函数自动销毁。
6、evaluate函数必须要返回类型值,空的话返回null,不能为void类型。
7、UDF是基于单条记录的列进行的计算操作,而UDFA则是用户自定义的聚类函数,是基于表的所有记录进行的计算操作。
8、UDF和UDAF都可以重载。
9、查看函数
SHOW FUNCTIONS;
1. UDTF介绍
UDTF(User-Defined Table-Generating Functions) 用来解决 输入一行输出多行(On-to-many maping) 的需求。
2. 编写自己需要的UDTF
继承org.apache.hadoop.hive.ql.udf.generic.GenericUDTF。
实现initialize, process, close三个方法
UDTF首先会调用initialize方法,此方法返回UDTF的返回行的信息(返回个数,类型)。初始化完成后,会调用process方法,对传入的参数进行处理,可以通过forword()方法把结果返回。最后close()方法调用,对需要清理的方法进行清理。
下面是一个用来切分”key:value;key:value;”这种字符串,返回结果为key, value两个字段。供参考:
import java.util.ArrayList;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
public class ExplodeMap extends GenericUDTF{
@Override
public void close() throws HiveException {
// TODO Auto-generated method stub
}
@Override
public StructObjectInspector initialize(ObjectInspector[] args)
throws UDFArgumentException {
if (args.length != 1) {
throw new UDFArgumentLengthException("ExplodeMap takes only one argument");
}
if (args[0].getCategory() != ObjectInspector.Category.PRIMITIVE) {
throw new UDFArgumentException("ExplodeMap takes string as a parameter");
}
ArrayList<String> fieldNames = new ArrayList<String>();
ArrayList<ObjectInspector> fieldOIs = new ArrayList<ObjectInspector>();
fieldNames.add("col1");
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
fieldNames.add("col2");
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames,fieldOIs);
}
@Override
public void process(Object[] args) throws HiveException {
String input = args[0].toString();
String[] test = input.split(";");
for(int i=0; i<test.length; i++) {
try {
String[] result = test[i].split(":");
forward(result);
} catch (Exception e) {
continue;
}
}
}
}
3. 使用方法
UDTF有两种使用方法,一种直接放到select后面,一种和lateral view一起使用。
1:直接select中使用:select explode_map(properties) as (col1,col2) from src;
不可以添加其他字段使用:select a, explode_map(properties) as (col1,col2) from src
不可以嵌套调用:select explode_map(explode_map(properties)) from src
不可以和group by/cluster by/distribute by/sort by一起使用:select explode_map(properties) as (col1,col2) from src group by col1, col2
2:和lateral view一起使用:select src.id, mytable.col1, mytable.col2 from src lateral view explode_map(properties) mytable as col1, col2;
此方法更为方便日常使用。执行过程相当于单独执行了两次抽取,然后union到一个表里。
相关推荐
这些函数可以是单行输入单行输出的UDF,多行输入单行输出的UDF(UDAF,User Defined Aggregation Function),或者多行输入多行输出的UDTF(User Defined Table Generating Function)。 2. **Java编程**: Hive ...
内置聚合函数(UDAF)和表生成函数(UDTF)是Hive UDF中的高级功能。UDAF允许用户编写自定义的聚合逻辑,如自定义的count、sum、avg等;UDTF则允许用户将一行数据转换为多行数据,或者将多行数据合并为一行数据输出...
Hive UDF分为三种主要类别:UDF(User Defined Scalar Functions),UDAF(User Defined Aggregate Functions),以及UDTF(User Defined Table Generating Functions)。UDF处理单行输入并返回单行输出,如字符串...
ADD JAR /path/to/your/hiveUDF.jar; CREATE TEMPORARY FUNCTION mask AS 'com.yourpackage.MaskingUDF'; ``` 4. **使用UDF**: 注册完成后,你可以在查询中直接使用`mask`函数。假设我们有一个包含手机号码的表`...
这是一些有用的 Hive UDF 和 UDAF 的集合。 提供的功能 UDAF Mode ( de.frosner.hive.udaf.Mode ) - 计算组列的统计模式 从源头构建 git clone https://github.com/FRosner/mustached-hive-udfs.git cd mustached...
Hive 支持多种类型的 UDF,包括普通函数(UDF)、聚合函数(UDAF)和表生成函数(UDTF)。UDF 允许用户扩展 Hive 的功能,处理特定的数据转换和计算任务。例如,你可以创建一个 UDF 来处理文本,如分词、去除停用词...
Hive 的灵活性之一在于支持用户自定义函数(UDF),包括用户定义的单行函数(UDF)、用户定义的多行函数(UDAF)和用户定义的表函数(UDTF)。这些自定义函数允许开发者扩展Hive的功能,以满足特定的业务需求。 ...
1. **编写Java类**:实现Hive提供的特定接口,如UDF、UDAF或UDTF。 2. **添加元数据**:在Hive Metastore中注册UDF,指定函数名、输入/输出类型等信息。 3. **编译与部署**:将Java类打包成JAR文件,上传到Hadoop...
hive-udf-hook UDF开发及发布过程 1 用户编写UDF实现类 2 编写完成后,在UDFHooks类中调用相关注册函数: 调用 FunctionRegistry.registerUDF 注册udf 调用 FunctionRegistry.registerUDAF 注册udaf 调用...
- Hive UDFs 分为三类:UDF(单行函数),UDAF(聚合函数)和 UDTF(多行函数)。`hive-udf-collections` 主要关注 UDF。 - UDF 允许用户扩展 Hive 的功能,解决内置函数无法满足的特定需求。 - UDFs 必须用 Java...
Hive的UDF可以分为三类:UDF(单行)、UDAF(多行,聚合)和UDTF(多行到多行)。在这个例子中,我们讨论的是UDF,因为它处理单行数据。 在压缩包文件名`addmonth`中,我们可以猜测这个文件可能包含了实现月份加法...
本示例“hive自定义函数demo”将探讨如何在Hive中开发和使用自定义函数(UDF),这对于扩展Hive的功能和适应特定业务需求至关重要。下面,我们将深入学习与Hive自定义函数相关的知识。 1. **什么是Hive UDF?** ...
个人 Hive UDAF 有一堆 Hive UDAF(用户定义的聚合函数)不在标准 Hive 分布中,因为它们可能会导致大型数据集的 OOM。 要使用它们,您需要加载 jar 文件,然后为每个要使用的函数创建一个临时函数: ADD JAR target...
Hive支持三种类型的自定义函数:用户定义的函数(UDF)、用户定义的聚合函数(UDAF)和用户定义的表生成函数(UDTF)。本篇文章主要介绍UDF的实现方法。 ##### 2.1 UDF的作用 - **扩展性**:允许开发人员根据具体...
hive-udfhive自定义函数主要实现hive3种自定义函数1,udf函数,主要用于处理一对一数据处理2,udtf函数,主要用于处理一对多数据处理2,udaf函数,主要用与处理多对一数据聚合处理
首先,Hive提供了多种函数类型,包括用户定义函数(UDF)、用户定义聚合函数(UDAF)、用户定义表生成函数(UDTF)和宏。用户定义函数(UDF)是一个接受一个或多个行中的列作为参数,并返回一个值或对象的函数,例如...
5. **Hive的存储过程(UDF、UDAF、UDTF)**:Hive提供了用户自定义函数(UDF)、用户自定义聚合函数(UDAF)和用户自定义表生成函数(UDTF),允许用户扩展Hive的功能,实现复杂的数据处理逻辑。 6. **Hive的优化**...
Hive 基本概念 Hive 应用场景。 Hive 与hadoop的关系。 Hive 与传统数据库对比。 Hive 的数据存储机制。 Hive 基本操作 ...Hive 中的DDL操作。...Hive UDF/UDAF开发实例。 Hive 执行过程分析及优化策略
6. **存储过程(UDF,UDAF,UDTF)**:Hive支持用户自定义函数(UDF),用户定义聚合函数(UDAF)和用户定义表生成函数(UDTF),允许扩展Hive的功能。 7. **连接Hadoop生态系统**:Hive与Hadoop生态系统的其他组件...
8. **Hive 的扩展性**:Hive 可以通过添加新的 SerDe(序列化/反序列化库)支持不同格式的数据,通过 Hive UDF、UDAF 和 UDTF 实现自定义功能,以适应特定的业务需求。 9. **Hive 的安全性**:Hive 支持角色基础的...