最近在写一个荧光图像分析软件,需要自己拟合方程。一元回归线公式的算法参考了《Java数值方法》,拟合度R^2(绝对系数)是自己写的,欢迎讨论。计算结果和Excel完全一致。
总共三个文件:
DataPoint.java
/** * A data point for interpolation and regression. */ public class DataPoint { /** the x value */ public float x; /** the y value */ public float y;
/** * Constructor. * @param x the x value * @param y the y value */ public DataPoint(float x, float y) { this.x = x; this.y = y;
} }
/** * A least-squares regression line function. */
import java.util.*; import java.math.BigDecimal;
public class RegressionLine //implements Evaluatable { /** sum of x */ private double sumX; /** sum of y */ private double sumY; /** sum of x*x */ private double sumXX; /** sum of x*y */ private double sumXY; /** sum of y*y */ private double sumYY; /** sum of yi-y */ private double sumDeltaY; /** sum of sumDeltaY^2 */ private double sumDeltaY2; /**误差 */ private double sse; private double sst; private double E; private String[] xy ; private ArrayList listX ; private ArrayList listY ; private int XMin,XMax,YMin,YMax; /** line coefficient a0 */ private float a0; /** line coefficient a1 */ private float a1;
/** number of data points */ private int pn ; /** true if coefficients valid */ private boolean coefsValid;
/** * Constructor. */ public RegressionLine() { XMax = 0; YMax = 0; pn = 0; xy =new String[2]; listX = new ArrayList(); listY = new ArrayList(); }
/** * Constructor. * @param data the array of data points */ public RegressionLine(DataPoint data[]) { pn = 0; xy =new String[2]; listX = new ArrayList(); listY = new ArrayList(); for (int i = 0; i < data.length; ++i) { addDataPoint(data[i]); } }
/** * Return the current number of data points. * @return the count */ public int getDataPointCount() { return pn; }
/** * Return the coefficient a0. * @return the value of a0 */ public float getA0() { validateCoefficients(); return a0; }
/** * Return the coefficient a1. * @return the value of a1 */ public float getA1() { validateCoefficients(); return a1; }
/** * Return the sum of the x values. * @return the sum */ public double getSumX() { return sumX; }
/** * Return the sum of the y values. * @return the sum */ public double getSumY() { return sumY; }
/** * Return the sum of the x*x values. * @return the sum */ public double getSumXX() { return sumXX; }
/** * Return the sum of the x*y values. * @return the sum */ public double getSumXY() { return sumXY; } public double getSumYY() { return sumYY; } public int getXMin() { return XMin; }
public int getXMax() { return XMax; }
public int getYMin() { return YMin; }
public int getYMax() { return YMax; } /** * Add a new data point: Update the sums. * @param dataPoint the new data point */ public void addDataPoint(DataPoint dataPoint) { sumX += dataPoint.x; sumY += dataPoint.y; sumXX += dataPoint.x*dataPoint.x; sumXY += dataPoint.x*dataPoint.y; sumYY += dataPoint.y*dataPoint.y; if(dataPoint.x > XMax){ XMax = (int)dataPoint.x; } if(dataPoint.y > YMax){ YMax = (int)dataPoint.y; } //把每个点的具体坐标存入ArrayList中,备用 xy[0] = (int)dataPoint.x+ ""; xy[1] = (int)dataPoint.y+ ""; if(dataPoint.x!=0 && dataPoint.y != 0){ System.out.print(xy[0]+","); System.out.println(xy[1]); try{ //System.out.println("n:"+n); listX.add(pn,xy[0]); listY.add(pn,xy[1]); } catch(Exception e){ e.printStackTrace(); } /* System.out.println("N:" + n); System.out.println("ArrayList listX:"+ listX.get(n)); System.out.println("ArrayList listY:"+ listY.get(n)); */ } ++pn; coefsValid = false; }
/** * Return the value of the regression line function at x. * (Implementation of Evaluatable.) * @param x the value of x * @return the value of the function at x */ public float at(int x) { if (pn < 2) return Float.NaN;
validateCoefficients(); return a0 + a1*x; } public float at(float x) { if (pn < 2) return Float.NaN;
validateCoefficients(); return a0 + a1*x; }
/** * Reset. */ public void reset() { pn = 0; sumX = sumY = sumXX = sumXY = 0; coefsValid = false; }
/** * Validate the coefficients. * 计算方程系数 y=ax+b 中的a */ private void validateCoefficients() { if (coefsValid) return;
if (pn >= 2) { float xBar = (float) sumX/pn; float yBar = (float) sumY/pn;
a1 = (float) ((pn*sumXY - sumX*sumY) /(pn*sumXX - sumX*sumX)); a0 = (float) (yBar - a1*xBar); } else { a0 = a1 = Float.NaN; }
coefsValid = true; } /** * 返回误差 */ public double getR(){ //遍历这个list并计算分母 for(int i = 0; i < pn -1; i++) { float Yi= (float)Integer.parseInt(listY.get(i).toString()); float Y = at(Integer.parseInt(listX.get(i).toString())); float deltaY = Yi - Y; float deltaY2 = deltaY*deltaY; /* System.out.println("Yi:" + Yi); System.out.println("Y:" + Y); System.out.println("deltaY:" + deltaY); System.out.println("deltaY2:" + deltaY2); */ sumDeltaY2 += deltaY2; //System.out.println("sumDeltaY2:" + sumDeltaY2); } sst = sumYY - (sumY*sumY)/pn; //System.out.println("sst:" + sst); E =1- sumDeltaY2/sst; return round(E,4) ; } //用于实现精确的四舍五入 public double round(double v,int scale){
if(scale<0){ throw new IllegalArgumentException( "The scale must be a positive integer or zero"); } BigDecimal b = new BigDecimal(Double.toString(v)); BigDecimal one = new BigDecimal("1"); return b.divide(one,scale,BigDecimal.ROUND_HALF_UP).doubleValue();
} public float round(float v,int scale){
if(scale<0){ throw new IllegalArgumentException( "The scale must be a positive integer or zero"); } BigDecimal b = new BigDecimal(Double.toString(v)); BigDecimal one = new BigDecimal("1"); return b.divide(one,scale,BigDecimal.ROUND_HALF_UP).floatValue();
} }
演示程序:
LinearRegression.java
/** * <p><b>Linear Regression</b> * <br> * Demonstrate linear regression by constructing the regression line for a set * of data points. * * <p>require DataPoint.java,RegressionLine.java * * <p>为了计算对于给定数据点的最小方差回线,需要计算SumX,SumY,SumXX,SumXY; (注:SumXX = Sum (X^2)) * <p><b>回归直线方程如下: f(x)=a1x+a0 </b> * <p><b>斜率和截距的计算公式如下:</b> * <br>n: 数据点个数 * <p>a1=(n(SumXY)-SumX*SumY)/(n*SumXX-(SumX)^2) * <br>a0=(SumY - SumY * a1)/n * <br>(也可表达为a0=averageY-a1*averageX) * * <p><b>画线的原理:两点成一直线,只要能确定两个点即可</b><br> * 第一点:(0,a0) 再随意取一个x1值代入方程,取得y1,连结(0,a0)和(x1,y1)两点即可。 * 为了让线穿过整个图,x1可以取横坐标的最大值Xmax,即两点为(0,a0),(Xmax,Y)。如果y=a1*Xmax+a0,y大于 * 纵坐标最大值Ymax,则不用这个点。改用y取最大值Ymax,算得此时x的值,使用(X,Ymax), 即两点为(0,a0),(X,Ymax) * * <p><b>拟合度计算:(即Excel中的R^2)</b> * <p> *R2 = 1 - E * <p>误差E的计算:E = SSE/SST * <p>SSE=sum((Yi-Y)^2) SST=sumYY - (sumY*sumY)/n; * <p> */ public class LinearRegression { private static final int MAX_POINTS = 10; private double E;
/** * Main program. * * @param args * the array of runtime arguments */ public static void main(String args[]) { RegressionLine line = new RegressionLine();
line.addDataPoint(new DataPoint(20, 136)); line.addDataPoint(new DataPoint(40, 143)); line.addDataPoint(new DataPoint(60, 152)); line.addDataPoint(new DataPoint(80, 162)); line.addDataPoint(new DataPoint(100, 167)); printSums(line); printLine(line); }
/** * Print the computed sums. * * @param line * the regression line */ private static void printSums(RegressionLine line) { System.out.println("\n数据点个数 n = " + line.getDataPointCount()); System.out.println("\nSum x = " + line.getSumX()); System.out.println("Sum y = " + line.getSumY()); System.out.println("Sum xx = " + line.getSumXX()); System.out.println("Sum xy = " + line.getSumXY()); System.out.println("Sum yy = " + line.getSumYY()); }
/** * Print the regression line function. * * @param line * the regression line */ private static void printLine(RegressionLine line) { System.out.println("\n回归线公式: y = " + line.getA1() + "x + " + line.getA0()); System.out.println("拟合度: R^2 = " + line.getR()); } }
|
相关推荐
在Java中实现一元线性回归,通常涉及以下步骤: 1. **数据预处理**:首先,你需要收集并组织数据,这通常包括读取数据集,可能来自CSV、Excel或其他格式的文件。这些数据应包含自变量 'x' 和因变量 'y' 的值。 2. ...
在Java编程环境中,我们可以使用各种库来实现一元线性回归分析。例如,Apache Commons Math库提供了一系列的统计功能,包括回归分析。首先,我们需要导入数据并将其转化为可以处理的数值格式。这通常涉及读取CSV或...
本篇文章介绍了一元线性回归和多元线性回归的Java实现方法,并通过具体的代码片段详细解释了各个步骤。通过这些方法,我们可以有效地建立预测模型,评估模型的准确性和可靠性。最小二乘法作为核心算法,在实际应用中...
一元线性回归采用最小平方误差法并以Java实现。
例如,`LinearRegressionSimple`可能是一个简单的线性回归实现,而`LinearRegression`可能提供更复杂的功能,如处理多元回归。`DataPointSimple`可能用于表示数据集中的单个观测值,包含自变量和因变量的值。 在...
在本篇文章中,我们将详细介绍多元线性回归的基本原理、算法实现,并对给定的Java代码进行解析。 #### 多元线性回归原理 在数学上,多元线性回归模型可以表示为: \[ Y = \beta_0 + \beta_1X_1 + \beta_2X_2 + ......
学习时间与分数数据集,25条数据
在这个“回归算法Java程序”中,我们可以深入探讨如何使用Java来实现多元线性回归和一元回归。 一、回归分析基础 回归分析是一种统计方法,用于研究两个或多个变量之间的关系,尤其是一个变量(因变量)如何随其他...
最小二乘法一元线性回归模型的Java实现(包含代码) 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得...
在最简单的形式下,线性回归模型是一元线性回归,表示为 y = ax + b,其中 y 是目标变量(车流量),a 是斜率(影响大小),x 是输入变量(例如时间),b 是截距(当输入为0时的预测值)。 3. 模型学习与预测:模型...
进行多元回归分析时,本文首先尝试了一元回归模型,接着在模型中加入了二次项和三次项,以探索是否存在非线性关系。在多元回归分析中,本文利用所有子集法选择变量,这是一种寻找最优回归模型的搜索方法,可以在所有...
线性回归试图找到一条直线(对于一元线性回归)或超平面(对于多元线性回归),使得数据点到这条线的距离之和最小。这条线被称为回归线,其方程通常表示为y = wx + b,其中y是因变量,x是自变量,w是权重,b是截距。...
在一元线性回归中,通常使用最小二乘法来确定直线的斜率和截距,使得所有数据点到直线的距离平方和最小。 以上就是针对给定的 Java 面试题中涉及的关键知识点的详细介绍。这些知识点涵盖了 Java 编程语言的基础知识...
在最小二乘法中,我们寻找一条直线(对于一元线性回归)或超平面(多元线性回归),使得所有数据点到这条直线的垂直距离(即残差)的平方和最小。 2. **残差**:残差是实际观测值与模型预测值之间的差值。在最小二...
这种元件的伏安特性曲线可以通过一元线性回归进行拟合分析。非线性负阻的特点是其阻值随电压或电流的增加而减小,这在某些情况下可以导致电路动态行为的显著变化,进而产生混沌状态。 【Multisim仿真设计】Multisim...
应用统计学与 R 语言建模部分,主要内容包括数据的描述性分析、随机变量的概率分布、参数估计、假设检验、类别变量分析、方差分析、一元线性回归、多元线性回归、时间序列预测、聚类分析等,旨在培养学生的统计学和 ...
实例224 一元线性回归计算 282 实例225 实数矩阵的运算 283 实例226 复数的常见运算 284 实例227 T分布常用计算 285 10.3 Commons IO组件简介 286 实例228 简化文件(夹)删除 286 实例229 简化文件(夹)复制 287 ...
一元线性回归处理和粒度分布图的绘制展示了C语言在数值计算和数据可视化方面的潜力。 C语言的强大在于它的灵活性和效率,它被广泛应用于系统软件开发,无论是操作系统、数据库还是各种嵌入式系统,都有C语言的身影...