- 浏览: 886134 次
- 性别:
- 来自: 杭州
-
文章分类
最新评论
-
hzw2312:
C = sin(MLatA)*sin(MLatB)*cos(M ...
根据地球上任意两点的经纬度计算两点间的距离 -
zhang_sun:
rewind方法的limit又是多少呢?等于capacity? ...
ByteBuffer的flip,clear及rewind区别 -
kalogen:
一种每次都获取到不同的随机数的办法int ranseed=12 ...
J2ME中Random类的使用 -
kalogen:
估计部署在某个端口下吧,仔细检查一下发布的配置文件
Tomcat负载均衡和集群环境的搭建 -
zhuchao_ko:
文件大点就嗝屁了~~~
Axis 1.4 上传二进制文件(base64Binary)
PNG文件格式分为PNG-24和PNG-8,其最大的区别是PNG-24是用24位来保存一个像素值,是真彩色,而PNG-8是用8位索引值来在调色盘 中索引一个颜色,因为一个索引值的最大上限为2的8次方既128,故调色盘中颜色数最多为128种,所以该文件格式又被叫做PNG-8 128仿色。PNG-24因为其图片容量过大,而且在Nokia和Moto等某些机型上创建图片失败和显示不正确等异常时有发生,有时还会严重拖慢显示速度,故并不常 用,CoCoMo认为这些异常和平台底层的图像解压不无关系。不过该格式最大的优点是可以保存Alpha通道,同事也曾有过利用该图片格式实现Alpha 混合的先例,想来随着技术的发展,手机硬件平台的提升,Alpha混合一定会被广泛的应用,到那时该格式的最大优势才会真正发挥。
8 bit PNGs use an indexed color palette like GIF. If you want variable transparency, use 32bit PNGs (24 bit color, 8 bit alpha). If you don't care about transparency, use 24 bit PNGs.
PNG-8文件是目前广泛应用的PNG图像格式,其主要有六大块组成:
1.PNG文件标志,为固定的64个字节:0x89504e47 0x0d0a1a0a
2.文件头数据块IHDR(header chunk)
3.调色板数据块PLTE(palette chunk)
4.sBIT,tRNS块 等。。。
5.图像数据块IDAT(image data chunk)
6.图像结束数据IEND(image trailer chunk),固定的96个字节:0x00000000 0x49454e44 0xae426082
这六大块按顺序排列,也就是说IDAT块永远是在PLTE块之后,期间也会有许多其他的区块用来描述信息,例如图像的最后修改时间是多少,图像的创建者是谁等,不过这些区块的信息对我们来说都是可有可无的描述信息,故压缩时一般先向这些区块开刀。
数据块1-4:
除了PNG文件标志,其中四大数据块和文件尾都是由统一的数据块文件结构描述的:
Chunk Length: 4byte
Chunk Type: 4byte
Chunk Data: Chunk Length的长度
Chunk CRC: 4byte
例如IHDR块的数据长度为13,既
Chunk Length = 13
Chunk Type = "IHDR"
IHDR块:
用来描述图像的基本信息,其格式为:
图像宽: 4byte
图像高: 4byte
图像色深: 4byte
颜色类型: 1byte
压缩方法: 1byte
滤波方法: 1byte
扫描方法: 1byte
曾经有人问过我,撒叫滤波方法和扫描方法,汗,说实话我也不知道,不过我们是在做手机游戏,不是在搞图形学不是嘛。
PLTE块:
这个就是传说中放置调色盘数据的地方啦,其格式为:
循环
RED: 1byte
GREEN:1byte
BLUE: 1byte
END
循环长度嘛,不就是Chunk Length / 3的长度嘛,而且Chunk Length一定为3的倍数。
tRNS块:
这个块时有时无,主要是看你是否使用了透明色。该区块的格式为:
循环
if(对应调色盘颜色非透明)
0xFF: 1byte
else
0x00: 1byte
END
循环长度为调色盘的颜色数,相当于调色盘颜色表的一个对应表,标识该颜色是否透明,0xFF不透明,0x00透明。故如果用UltraEdit查看PNG文件的二进制编码,如果看到一大片FF,一般就是tRNS区块啦,因为一个PNG文件一般只有一个透明色。
IDAT块: 这个就是存放图像数据的地方啦,这里要注意的是一个PNG文件可能有多个IDAT区块,而其他三大区块只可能有一个。 IDAT 区块是经过压缩的,所以数据不可读 ,压缩算法一般为LZ77滑动窗口算法,如果硬要看里面的数据的话,用zlib库也是可以的,CoCoMo当年就见过 Windows Mobile上的帝国时代巨变态的用zlib库压缩和解压该区块来进一步减少PNG文件大小,真是寸K寸金啊。
IEND块:
该区块虽然也按照数据块的结构,但Chunk Data是没有的,所以是固定的96个字节:0x00000000 0x49454e44 0xae426082
IEND数据块的长度总是0(00 00 00 00,除非人为加入信息),数据标识总是IEND(49 45 4E 44),因此,CRC码也总是AE 42 60 82。
PNG图像压缩:
了解了PNG的文件结构,压缩就有的放矢了。压缩有6个级别,可以根据需要选择。
Level1:读取PNG文件,将除六大块之外的所有区块都过滤掉
Level2:文件头是固定的0x89504e47 0x0d0a1a0a,文件尾是固定的0x00000000 0x49454e44 0xae426082,去掉!
Level3:每个区块的Chunk Type我们是否需要呢?很明显,我们自己写的压缩格式自己应该清楚是按照什么样的顺序,去掉!
Level4:每个区块的Chunk Length我们是否需要呢?
IHDR块:定长13个字节,明显不需要,去掉。
PLTE块:最多128个颜色,为撒要用4byte来记录区块长度而不是用1byte来记录颜色数呢?
tRNS块:既然有颜色数,tRNS又是调色盘颜色表的对应表,既数量与颜色数相同,为撒还需要呢?
IDAT块:我想这个是唯一需要4byte来记录长度的区块。
Level5:每个区块的Chunk CRC是否需要呢?
因为计算CRC需要一些时间,但对于字节较少的区块一般可以忽略不计,所以对于这个问题还是由程序员自己决定吧。对于CRC的计算可以参看CoCoMo的另一篇Blog“PNG文件的CRC码计算”
Level6:每个区块我们是否要原封不动的保存期数据呢?
IHDR块:除了宽、高、色深是需要的,后面那4byte的信息是固定的0x03000000
PLTE块:为撒要用3byte来表示RGB而不是2byte的565格式?压缩方法可以参看CoCoMo的另一篇Blog“关于PNG图像压缩的一点感悟”
tRNS块:我想tRNS块是冗余最多的区块了吧,大段大段的0xFF明显没有必要,一般的PNG文件只有一个透明色,为撒要用对应表的方法而不是一个索 引来记录到底哪个是透明色呢?由于颜色数最多128,所以只需1byte就可以代替tRNS那么多0xFF啦。
IDAT块:么想法,如果你够变态,把zlib加进来吧!
PNG图像解压:
创建了自定义的文件,J2ME端读取后,就面临解压的问题了。我们可以利用此函数来创建Image:
static Image
createImage(byte[] imageData, int imageOffset, int imageLength)
前提是传入的imageData与PNG未被压缩前的一致。因为PNG文件格式是固定的,所以读取自定义的压缩文件后,开始将那些默认的数据再添加进去,实现解压的目的。下面就开始解压之旅吧!
首先要创建一个ByteArrayOutputStream out,
1.写入文件头:
out.writeInt(0x89504e47);
out.writeInt(0x0d0a1a0a);
2.写入IHDR块
out.writeInt(13);
out.writeInt(0x49484452); //0x49484452为Chunk Type "IHDR"
out.writeInt(width);
out.writeInt(height);
out.writeByte(depth);
out.writeInt(0x03000000); //压缩时舍掉的4byte,默认0x03000000
out.writeInt(crc);
其他区块方法一致,故略过。。。
3.写入文件尾
out.writeInt(0x00000000);
out.writeInt(0x49454e44);
out.writeInt(0xae426082);
4.转换成数组,创建Image
byte[] pngBuffer = out.toByteArray();
Image image = Image.createImage(pngBuffer, 0, pngBuffer.length);
哈哈,大功告成。这里注意如果中途数据写入有错误,经常会出现创建Image失败的异常,而且非常不好调试,不过只要自定的压缩格式定下来后,对应的创建Image的函数只要写一次,以后基本不会出问题哈。
PNG图像加解密:
很多人都担心自己辛苦创作的漂亮的美术图片很easy就被别人拿到了,究其原因是由于PNG文件格式是固定的,稍微了解的人用UltraEdit很容易就 能找到IHDR,PLTE等标识了。CoCoMo就经常看GameLoft的图像文件,哈哈。一般是2byte的Length,然后紧接着图片数据,都放 在一个文件里,直接拷贝2进制然后粘贴到一个新文件里就是一幅图。后来的加密技术会把PNG分块,例如前100个字节一块,紧接着1K一块,最后剩余字节 一块,然后把块顺序打乱,用2byte来记录总长度,1byte记录顺序,但是这并没有从根本上消除IHDR,IEND这些显眼的定位标识,好像在对破解 者说:嘿,看,我就在这里!
现在了解了之前的压缩和解压技术,这个问题也就迎刃而解了,因为Chunk Length,Chunk Type和Chunk CRC这些东西都消失了,甚至连数据块本身的数据都修改了,我可以按照ImageWidth、ImageHeight、ImageDepth的顺序写数 据,也可以倒过来写。我想再牛的PNG分析器也是无能为力的吧,唯一可以定位的就只有IDAT区块了,不过就算得到该区块的数据,也应该是一张黑白图。
-----------------------------------------------------------------
-----------------------------------------------------------------
-----------------------------------------------------------------
附录
PNG文件结构分析(上:了解PNG文件存储格式)
PNG的文件结构
对于一个PNG文件来说,其文件头总是由位固定的字节来描述的:
十进制数 | 137 80 78 71 13 10 26 10 |
十六进制数 | 89 50 4E 47 0D 0A 1A 0A |
其中第一个字节0x89超出了ASCII字符的范围,这是为了避免某些软件将PNG文件当做文本文件来处理。文件中剩余的部分由3个以上的PNG的数据块(Chunk)按照特定的顺序组成,因此,一个标准的PNG文件结构应该如下:
PNG文件标志 | PNG数据块 | …… | PNG数据块 |
PNG数据块(Chunk)
PNG定义了两种类型的数据块,一种是称为关键数据块(critical chunk),这是标准的数据块,另一种叫做辅助数据块(ancillary chunks),这是可选的数据块。关键数据块定义了4个标准数据块,每个PNG文件都必须包含它们,PNG读写软件也都必须要支持这些数据块。虽然 PNG文件规范没有要求PNG编译码器对可选数据块进行编码和译码,但规范提倡支持可选数据块。
下表就是PNG中数据块的类别,其中,关键数据块部分我们使用深色背景加以区分。
PNG文件格式中的数据块
|
||||
数据块符号
|
数据块名称
|
多数据块
|
可选否
|
位置限制
|
IHDR | 文件头数据块 | 否 | 否 | 第一块 |
cHRM | 基色和白色点数据块 | 否 | 是 | 在PLTE和IDAT之前 |
gAMA | 图像γ数据块 | 否 | 是 | 在PLTE和IDAT之前 |
sBIT | 样本有效位数据块 | 否 | 是 | 在PLTE和IDAT之前 |
PLTE | 调色板数据块 | 否 | 是 | 在IDAT之前 |
bKGD | 背景颜色数据块 | 否 | 是 | 在PLTE之后IDAT之前 |
hIST | 图像直方图数据块 | 否 | 是 | 在PLTE之后IDAT之前 |
tRNS | 图像透明数据块 | 否 | 是 | 在PLTE之后IDAT之前 |
oFFs | (专用公共数据块) | 否 | 是 | 在IDAT之前 |
pHYs | 物理像素尺寸数据块 | 否 | 是 | 在IDAT之前 |
sCAL | (专用公共数据块) | 否 | 是 | 在IDAT之前 |
IDAT | 图像数据块 | 是 | 否 | 与其他IDAT连续 |
tIME | 图像最后修改时间数据块 | 否 | 是 | 无限制 |
tEXt | 文本信息数据块 | 是 | 是 | 无限制 |
zTXt | 压缩文本数据块 | 是 | 是 | 无限制 |
fRAc | (专用公共数据块) | 是 | 是 | 无限制 |
gIFg | (专用公共数据块) | 是 | 是 | 无限制 |
gIFt | (专用公共数据块) | 是 | 是 | 无限制 |
gIFx | (专用公共数据块) | 是 | 是 | 无限制 |
IEND | 图像结束数据 | 否 | 否 | 最后一个数据块 |
为了简单起见,我们假设在我们使用的PNG文件中,这4个数据块按以上先后顺序进行存储,并且都只出现一次。
数据块结构
PNG文件中,每个数据块由4个部分组成,如下:
名称 | 字节数 | 说明 |
Length (长度) | 4字节 | 指定数据块中数据域的长度,其长度不超过(231 -1)字节 |
Chunk Type Code (数据块类型码) | 4字节 | 数据块类型码由ASCII字母(A-Z和a-z)组成 |
Chunk Data (数据块数据) | 可变长度 | 存储按照Chunk Type Code指定的数据 |
CRC (循环冗余检测) | 4字节 | 存储用来检测是否有错误的循环冗余码 |
CRC(cyclic redundancy check)域中的值是对Chunk Type Code域和Chunk Data域中的数据进行计算得到的。CRC具体算法定义在ISO 3309和ITU-T V.42中,其值按下面的CRC码生成多项式进行计算:
x32 +x26 +x23 +x22 +x16 +x12 +x11 +x10 +x8 +x7 +x5 +x4 +x2 +x+1
下面,我们依次来了解一下各个关键数据块的结构吧。
IHDR
文件头数据块IHDR(header chunk):它包含有PNG文件中存储的图像数据的基本信息,并要作为第一个数据块出现在PNG数据流中,而且一个PNG数据流中只能有一个文件头数据块。
文件头数据块由13字节组成,它的格式如下表所示。
域的名称
|
字节数
|
说明
|
Width | 4 bytes | 图像宽度,以像素为单位 |
Height | 4 bytes | 图像高度,以像素为单位 |
Bit depth | 1 byte | 图像深度: 索引彩色图像:1,2,4或8 灰度图像:1,2,4,8或16 真彩色图像:8或16 |
ColorType | 1 byte | 颜色类型: 0:灰度图像, 1,2,4,8或16 2:真彩色图像,8或16 3:索引彩色图像,1,2,4或8 4:带α通道数据的灰度图像,8或16 6:带α通道数据的真彩色图像,8或16 |
Compression method | 1 byte | 压缩方法(LZ77派生算法) |
Filter method | 1 byte | 滤波器方法 |
Interlace method | 1 byte | 隔行扫描方法: 0:非隔行扫描 1: Adam7(由Adam M. Costello开发的7遍隔行扫描方法) |
由于我们研究的是手机上的PNG,因此,首先我们看看MIDP1.0对所使用PNG图片的要求吧:
- 在MIDP1.0中,我们只可以使用1.0版本的PNG图片。并且,所以的PNG关键数据块都有特别要求:
IHDR - 文件大小:MIDP支持任意大小的PNG图片,然而,实际上,如果一个图片过大,会由于内存耗尽而无法读取。
- 颜色类型:所有颜色类型都有被支持,虽然这些颜色的显示依赖于实际设备的显示能力。同时,MIDP也能支持alpha通道,但是,所有的alpha通道信息都会被忽略并且当作不透明的颜色对待。
- 色深:所有的色深都能被支持。
- 压缩方法:仅支持压缩方式0(deflate压缩方式),这和jar文件的压缩方式完全相同,所以,PNG图片数据的解压和jar文件的解压可以使用相同的代码。(其实这也就是为什么J2ME能很好的支持PNG图像的原因:))
- 滤波器方法:尽管在PNG的白皮书中仅定义了方法0,然而所有的5种方法都被支持!
- 隔行扫描:虽然MIDP支持0、1两种方式,然而,当使用隔行扫描时,MIDP却不会真正的使用隔行扫描方式来显示。
- PLTE chunk:支持
- IDAT chunk:图像信息必须使用5种过滤方式中的方式0 (None, Sub, Up, Average, Paeth)
- IEND chunk:当IEND数据块被找到时,这个PNG图像才认为是合法的PNG图像。
- 可选数据块:MIDP可以支持下列辅助数据块,然而,这却不是必须的。
bKGD cHRM gAMA hIST iCCP iTXt pHYs
sBIT sPLT sRGB tEXt tIME tRNS zTXt
关于更多的信息,可以参考http://www.w3.org/TR/REC-png.html
PLTE
调色板数据块PLTE(palette chunk)包含有与索引彩色图像(indexed-color image)相关的彩色变换数据,它仅与索引彩色图像有关,而且要放在图像数据块(image data chunk)之前。
PLTE数据块是定义图像的调色板信息,PLTE可以包含1~256个调色板信息,每一个调色板信息由3个字节组成:
颜色 |
字节 |
意义 |
Red |
1 byte |
0 = 黑色, 255 = 红 |
Green |
1 byte |
0 = 黑色, 255 = 绿色 |
Blue |
1 byte |
0 = 黑色, 255 = 蓝色 |
因此,调色板的长度应该是3的倍数,否则,这将是一个非法的调色板。
对于索引图像,调色板信息是必须的,调色板的颜色索引从0开始编号,然后是1、2……,调色板的颜色数不能超过色深中规定的颜色数(如图像色深为4的时候,调色板中的颜色数不可以超过2^4=16),否则,这将导致PNG图像不合法。
真彩色图像和带α通道数据的真彩色图像也可以有调色板数据块,目的是便于非真彩色显示程序用它来量化图像数据,从而显示该图像。
IDAT
图像数据块IDAT(image data chunk):它存储实际的数据,在数据流中可包含多个连续顺序的图像数据块。
IDAT存放着图像真正的数据信息,因此,如果能够了解IDAT的结构,我们就可以很方便的生成PNG图像。
IEND
图像结束数据IEND(image trailer chunk):它用来标记PNG文件或者数据流已经结束,并且必须要放在文件的尾部。
如果我们仔细观察PNG文件,我们会发现,文件的结尾12个字符看起来总应该是这样的:
00 00 00 00 49 45 4E 44 AE 42 60 82
不难明白,由于数据块结构的定义,IEND数据块的长度总是0(00 00 00 00,除非人为加入信息),数据标识总是IEND(49 45 4E 44),因此,CRC码也总是AE 42 60 82。
实例研究PNG
以下是由Fireworks生成的一幅图像,图像大小为8*8, 为了方便大家观看,我们将图像放大:
使用UltraEdit32打开该文件,如下:
00000000~00000007:
可以看到,选中的头8个字节即为PNG文件的标识。
接下来的地方就是IHDR数据块了:
00000008~00000020:
- 00 00 00 0D 说明IHDR头块长为13
- 49 48 44 52 IHDR标识
- 00 00 00 08 图像的宽,8像素
- 00 00 00 08 图像的高,8像素
- 04 色深,2^4=16,即这是一个16色的图像(也有可能颜色数不超过16,当然,如果颜色数不超过8,用03表示更合适)
- 03 颜色类型,索引图像
- 00 PNG Spec规定此处总为0(非0值为将来使用更好的压缩方法预留),表示使压缩方法(LZ77派生算法)
- 00 同上
- 00 非隔行扫描
- 36 21 A3 B8 CRC校验
00000021~0000002F:
可选数据块sBIT,颜色采样率,RGB都是256(2^8=256)
00000030~00000062:
这里是调色板信息
- 00 00 00 27 说明调色板数据长为39字节,既13个颜色数
- 50 4C 54 45 PLTE标识
- FF FF 00 颜色0
- FF ED 00 颜色1
- …… ……
- 09 00 B2 最后一个颜色,12
- 5F F5 BB DD CRC校验
00000063~000000C5:
这部分包含了pHYs、tExt两种类型的数据块共3块,由于并不太重要,因此也不再详细描述了。
000000C0~000000F8:
以上选中部分是IDAT数据块
- 00 00 00 27 数据长为39字节
- 49 44 41 54 IDAT标识
- 78 9C…… 压缩的数据,LZ77派生压缩方法
- DA 12 06 A5 CRC校验
IDAT中压缩数据部分在后面会有详细的介绍。
000000F9~00000104:
IEND数据块,这部分正如上所说,通常都应该是 00 00 00 00 49 45 4E 44 AE 42 60 82
至此,我们已经能够从一个PNG文件中识别出各个数据块了。由于PNG中规定除关键数据块外,其它的辅助数据块都为可选部分,因此,有了这个标准后,我们可以通过删除所有的辅助数据块来减少PNG文件的大小。(当然,需要注意的是,PNG格式可以保存图像中的层、文字等信息,一旦删除了这些辅助数据块后,图像将失去原来的可编辑性。)
删除了辅助数据块后的PNG文件,现在文件大小为147字节,原文件大小为261字节,文件大小减少后,并不影响图像的内容。
其实,我们可以通过改变调色板的色值来完成一些又趣的事情,比如说实现云彩/水波的流动效果,实现图像的淡入淡出效果等等,在此,给出一个链接给大家看也许更直接:http://blog.csdn.net/flyingghost/archive/2005/01/13/251110.aspx ,我写此文也就是受此文的启发的。
如上说过,IDAT数据块是使用了LZ77压缩算法生成的,由于受限于手机处理器的能力,因此,如果我们在生成IDAT数据块时仍然使用LZ77压缩算法,将会使效率大打折扣,因此,为了效率,只能使用无压缩的LZ77算法,关于LZ77算法的具体实现,此文不打算深究,如果你对LZ77算法的JAVA实现有兴趣,可以参考以下两个站点:
PNG文件结构分析(下:在手机上生成PNG文件)
上面我们已经对PNG的存储格式有了了解,因此,生成PNG图片只需要按照以上的数据块写入文件即可。
(由于IHDR、PLTE的结构都非常简单,因此,这里我们只是重点讲一讲IDAT的生成方法,IHDR和PLTE的数据内容都沿用以上的数据内容)
问题确实是这样的,我们知道,对于大多数的图形文件来说,我们都可以将实际的图像内容映射为一个二维的颜色数组,对于上面的PNG文件,由于它用的是16色的调色板(实际是13色),因此,对于图片的映射可以如下:
(调色板对照图)
12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 |
11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 |
10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 |
9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
6 | 5 | 4 | 3 | 2 | 1 | 0 | 0 |
5 | 4 | 3 | 2 | 1 | 0 | 0 | 0 |
PNG Spec中指出,如果PNG文件不是采用隔行扫描方法存储的话,那么,数据是按照行(ScanLine)来存储的,为了区分第一行,PNG规定在每一行的前面加上0以示区分,因此,上面的图像映射应该如下:
0 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 |
0 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 |
0 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 |
0 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
0 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 0 |
0 | 5 | 4 | 3 | 2 | 1 | 0 | 0 | 0 |
另外,需要注意的是,由于PNG在存储图像时为了节省空间,因此每一行是按照位(Bit)来存储的,而并不是我们想象的字节(Byte),如果你没有忘记的话,我们的IHDR数据块中的色深就指明了这一点,所以,为了凑成PNG所需要的IDAT,我们的数据得改成如下:
0 | 203 | 169 | 135 | 101 |
0 | 186 | 152 | 118 | 84 |
0 | 169 | 135 | 101 | 67 |
0 | 152 | 118 | 84 | 50 |
0 | 135 | 101 | 67 | 33 |
0 | 118 | 84 | 50 | 16 |
0 | 101 | 67 | 33 | 0 |
0 | 84 | 50 | 16 | 0 |
最后,我们对这些数据进行LZ77压缩就可以得到IDAT的正确内容了。
然而,事情并不是这么简单,因为我们研究的是手机上的PNG,如果需要在手机上完成LZ77压缩工作,消耗的时间是可想而知的,因此,我们得再想办法加减少压缩时消耗的时间。好在LZ77也提供了无压缩的压缩方法(奇怪吧?),因此,我们只需要简单的使用无压缩的方式写入数据就可以了,这样虽然浪费了空间,却换回了时间!
好了,让我们看一看怎么样凑成无压缩的LZ77压缩块:
字节
|
意义
|
0~2 | 压缩信息,固定为0x78, 0xda, 0x1 |
3~6 | 压缩块的LEN和NLEN信息 |
压缩的数据
|
|
最后4字节 | Adler32信息 |
其中的LEN是指数据的长度,占用两个字节,对于我们的图像来说,第一个Scan Line包含了5个字节(如第一行的0, 203, 169, 135, 101),所以LEN的值为5(字节/行) * 8(行) = 40(字节),生成字节为28 00(低字节在前),NLEN是LEN的补码,即NLEN = LEN ^ 0xFFFF,所以NLEN的为 D7 FF,Adler32信息为24 A7 0B A4(具体算法见源程序),因此,按照这样的顺序,我们生成IDAT数据块,最后,我们将IHDR、PLTE、IDAT和IEND数据块写入文件中,就可以得到PNG文件了,如图:
至此,我们已经能够采用最快的时间将数组转换为PNG图片了
参考资料:
PNG文件格式白皮书:http://www.w3.org/TR/REC-png.html
为数不多的中文PNG格式说明:http://dev.gameres.com/Program/Visual/Other/PNGFormat.htm
RFC-1950(ZLIB Compressed Data Format Specification):ftp://ds.internic.net/rfc/rfc1950.txt
RFC-1950(DEFLATE Compressed Data Format Specification):ftp://ds.internic.net/rfc/rfc1951.txt
LZ77算法的JAVA实现:http://jazzlib.sourceforge.net/
LZ77算法的JAVA实现,包括J2ME版本:http://www.jcraft.com/jzlib/index.html
发表评论
-
eclipse中j2me项目引入jar包后,运行时报ClassNotFoundError的解决方法
2014-07-14 17:12 904在j2me项目中引入一个jar包,然后使用jar包里面的类做 ... -
wtk的默认模拟器修改
2014-04-29 00:07 652点击wtk目录下/bin/DefaultDevicew.e ... -
Could not find jar tool executable问题解决
2014-03-21 00:28 1267eclipse 中,在用PROGUARD生成混淆包Obfus ... -
WTK 模拟器的内存修改
2013-10-18 13:15 768在使用WTK模拟器运行较大的程序时偶尔会报内存不足的异常,解 ... -
j2me中sprite的旋转参考点的设定
2013-09-23 15:07 546默认在图片的左上角,可以用defineReferencePix ... -
J2ME用大华模拟器开发的一个小头痛的问题!
2013-08-21 15:06 815throw new UnsupportedOperation ... -
java/lang/OutOfMemoryError:Maximum byte code length (32kB) exceeded .
2013-02-05 17:18 1156Uncaught exception java/lang/ ... -
浅谈J2me游戏如何快速移植到Android
2012-06-12 14:25 814前言 小白:“老大,你让做的三个J2me游戏搞定了,请看DEM ... -
J2ME与Android系统的常用类、方法对比
2012-06-12 11:51 1044J2ME与Android系统的常用类、方法对比 ... -
serviceRepaints方法实现强制刷屏
2012-06-11 12:38 1137SUN在它的API里,说过。Forces any pendin ... -
J2ME中Random类的使用
2012-05-18 15:38 1162J2ME中,由于大部分的游戏都会涉及到随机性的事件,Rando ... -
J2ME程序开发全方位基础讲解
2012-05-17 11:16 958本文转自:http://innovator.samsung ... -
J2ME游戏设计框架
2012-05-16 10:59 866因为移动设备运行速度问题,J2ME开发比较注重程序的复杂度 ... -
Png图片换色的方法
2012-05-10 16:52 2292对于"索引类型的图片 ... -
打造自由换色的png图片类 .
2012-05-10 16:21 868想像一下,有一个游戏,里面有很多种颜色的人,图片完全一样,只是 ... -
NetBeans 字体设置
2012-05-03 11:21 1066最近下载了最新的NetBeans6.8玩玩,其实NetBean ... -
Netbeans 7和Subversion(svn) 1.7
2012-05-02 23:07 2081Netbeans的SVN插件,最后一次更新是07年了,所以它根 ... -
keyPressed接受不到部分按键
2009-04-09 18:04 1254今天测试一个贪吃蛇游戏,结果不管怎样按键,就是不接受到部分数字 ...
相关推荐
总结来说,J2ME游戏中的PNG图片处理包括了文件解析、颜色模式选择、数据压缩解压、加密解密、内存优化和渲染效率提升等多个环节。通过深入理解PNG格式和J2ME平台特性,开发者可以有效地利用PNG资源,创建出高质量且...
2. **图片格式**:了解图片文件的常见格式如JPEG、PNG、BMP等,以及它们的结构,因为加密通常是在文件二进制级别上进行的。 3. **加密算法的选择**:根据安全需求选择合适的加密算法,权衡安全性与效率。 4. **...
4. **图片格式与隐写**:不同的图片格式(如JPEG、PNG、BMP)对于隐写有不同的适应性,理解这些格式的内部结构有助于更有效地使用"bftools"。 5. **安全性评估**:使用"bftools"进行安全自测可以帮助用户评估自己的...
爆破PNG图片宽高"可能是指一种解谜或破解技术,参赛者需要通过某种方式获取PNG图像的隐藏信息,例如通过解析或篡改PNG文件的头部数据来找出图片的真实宽高,这可能涉及到逆向工程或者二进制分析。 在这个过程中,...
这个压缩包文件“png编码解码_1603485013”可能包含了用于PNG图像加密和解密的源码,这将帮助我们了解PNG加密的实现原理以及如何进行解密。 PNG图像的加密通常涉及以下关键知识点: 1. **PNG文件结构**:PNG文件由...
解密过程可能涉及到对微信应用程序的数据结构分析、密码学知识以及可能的逆向工程,以理解微信的加密算法。 解密步骤大致如下: 1. **数据提取**:首先,你需要找到微信缓存文件的位置,这通常位于手机或电脑的...
微信为了保护用户隐私,可能会对某些缓存文件进行加密,这就需要工具能够解密这些数据。此外,由于DAT文件可能包含碎片化的信息,工具需要能够重组这些碎片,以确保生成的图片完整无损。 标签中的“微信DAT转图片”...
3. **解密数据**:由于游戏的资源通常会被加密,源码需要包含解密算法,以恢复原始的未加密数据。 4. **提取图像数据**:找到并提取WAS文件中的图像数据,可能需要理解游戏的特定资源结构。 5. **转换为PNG格式**:...
本资料主要针对CTF中的隐写术实例进行详细讲解,包括图片隐写、流量分析、文件查看与分离以及加密解密等多个方面。 首先,我们来看“图片隐写”。图片是最常见的隐写载体,因为人眼往往难以察觉其中隐藏的信息。...
5. **图片资源**:文件列表中的1.png到5.png可能是一些流程图或代码示例,展示了这种代理方式的具体实现。通常,这些图片可以帮助我们更好地理解代码结构和工作流程。 结合上述分析,我们可以设想这样一个架构:当...
3. 解密函数:解密过程与加密类似,但字节替换和列混淆的操作逆序进行,以恢复原始明文。 源代码可能包含了这些功能的实现,以及如何调用它们来对数据进行加密和解密的示例。通过对这些源代码的分析和学习,开发者...
6. 图像加密与解密:可能使用了某种加密算法来保护图像数据。 深入学习这些源码,不仅可以提升图像处理的技能,还能增强对C语言底层编程和数据结构的理解。同时,对于想要开发自己的图像处理库或者进行图像分析应用...
4. 除此之外,Spire.Pdf还支持PDF的合并、分割、加密、解密等操作。 其次,iTextSharp是.NET平台上的一个开源PDF库,主要处理PDF文档的创建和修改。`itextsharp.dll`是其核心库。虽然iTextSharp的功能相对较少,但...
代码混淆是另一种保护策略,它不涉及实际的加密,而是通过重命名变量、函数、类名,以及改变代码结构,使得代码变得难以理解和分析。例如,可以使用PHP的obfuscators工具,如PHP Obfuscator、zephir等,它们可以将...
PDF转图像:如果需要将PDF文档作为图片分享或打印,可以将其转换为常见的图像格式,如JPEG、PNG等。这通常用于保护文档内容不被编辑。 PDF转Text:对于只需要文本内容的情况,可以将PDF转换为纯文本文件。虽然格式...
7. **安全性与反分析**:为了防止脚本被轻易分析或破解,开发者可能会采用混淆、反调试等技术,使得脚本的内部工作原理难以被逆向工程。 8. **实战应用**:除了CTF竞赛,隐写工具在现实世界也有应用,比如秘密情报...
4. **资源提取**:解析出各种类型资源的结构,例如图片可能采用PNG或JPEG格式,音频可能为MP3或WAV,然后将这些资源保存为可读格式。 5. **文件索引**:生成资源的索引,方便用户查找和浏览解压后的文件。 6. **...
转换工具可以将PDF页面导出为JPEG、PNG或TIFF等常见图片格式,适用于制作演示文稿或社交媒体分享。 5. **PDF转文本**:如果仅需要提取PDF中的纯文本内容,可以使用OCR(Optical Character Recognition,光学字符...