`

字符、字节和编码

阅读更多

摘要:本文介绍了字符与编码的发展过程,相关概念的正确理解。举例说明了一些实际应用中,编码的实现方法。然后,本文讲述了通常对字符与编码的几种误解,由于这些误解而导致乱码产生的原因,以及消除乱码的办法。本文的内容涵盖了“中文问题”,“乱码问题”。 

掌握编码问题的关键是正确地理解相关概念,编码所涉及的技术其实是很简单的。因此,阅读本文时需要慢读多想,多思考。 

引言 
“字符与编码”是一个被经常讨论的话题。即使这样,时常出现的乱码仍然困扰着大家。虽然我们有很多的办法可以用来消除乱码,但我们并不一定理解这些办法的内在原理。而有的乱码产生的原因,实际上由于底层代码本身有问题所导致的。因此,不仅是初学者会对字符编码感到模糊,有的底层开发人员同样对字符编码缺乏准确的理解。 


1. 编码问题的由来,相关概念的理解 
1.1 字符与编码的发展 
从计算机对多国语言的支持角度看,大致可以分为三个阶段: 

  系统内码 说明 系统 
阶段一 ASCII 计算机刚开始只支持英语,其它语言不能够在计算机上存储和显示。 英文 DOS 
阶段二 ANSI编码 
(本地化) 为使计算机支持更多语言,通常使用 0x80~0xFF 范围的 2 个字节来表示 1 个字符。比如:汉字 '中' 在中文操作系统中,使用 [0xD6,0xD0] 这两个字节存储。 

不同的国家和地区制定了不同的标准,由此产生了 GB2312, BIG5, JIS 等各自的编码标准。这些使用 2 个字节来代表一个字符的各种汉字延伸编码方式,称为 ANSI 编码。在简体中文系统下,ANSI 编码代表 GB2312 编码,在日文操作系统下,ANSI 编码代表 JIS 编码。 

不同 ANSI 编码之间互不兼容,当信息在国际间交流时,无法将属于两种语言的文字,存储在同一段 ANSI 编码的文本中。 中文 DOS,中文 Windows 95/98,日文 Windows 95/98 
阶段三 UNICODE 
(国际化) 为了使国际间信息交流更加方便,国际组织制定了 UNICODE 字符集,为各种语言中的每一个字符设定了统一并且唯一的数字编号,以满足跨语言、跨平台进行文本转换、处理的要求。 Windows NT/2000/XP,Linux,Java 

字符串在内存中的存放方法: 

在 ASCII 阶段,单字节字符串使用一个字节存放一个字符(SBCS)。比如,"Bob123" 在内存中为: 

42 6F 62 31 32 33 00 
       
B o b 1 2 3 \0 

在使用 ANSI 编码支持多种语言阶段,每个字符使用一个字节或多个字节来表示(MBCS),因此,这种方式存放的字符也被称作多字节字符。比如,"中文123" 在中文 Windows 95 内存中为7个字节,每个汉字占2个字节,每个英文和数字字符占1个字节: 

D6 D0 CE C4 31 32 33 00 
      
中 文 1 2 3 \0 

在 UNICODE 被采用之后,计算机存放字符串时,改为存放每个字符在 UNICODE 字符集中的序号。目前计算机一般使用 2 个字节(16 位)来存放一个序号(DBCS),因此,这种方式存放的字符也被称作宽字节字符。比如,字符串 "中文123" 在 Windows 2000 下,内存中实际存放的是 5 个序号: 

2D 4E 87 65 31 00 32 00 33 00 00 00      ← 在 x86 CPU 中,低字节在前 
       
中 文 1 2 3 \0   

一共占 10 个字节。 


1.2 字符,字节,字符串 
理解编码的关键,是要把字符的概念和字节的概念理解准确。这两个概念容易混淆,我们在此做一下区分: 

概念--->描述--->举例 
字符--->人们使用的记号,抽象意义上的一个符号。--->'1', '中', 'a', '$', '¥', …… 
字节--->计算机中存储数据的单元,一个8位的二进制数,是一个很具体的存储空间。---> 0x01, 0x45, 0xFA, …… 
ANSI --->字符串 在内存中,如果“字符”是以 ANSI 编码形式存在的,一个字符可能使用一个字节或多个字节来表示,那么我们称这种字符串为 ANSI 字符串或者多字节字符串。--->"中文123" (占7字节) 
UNICODE--->字符串 在内存中,如果“字符”是以在 UNICODE 中的序号存在的,那么我们称这种字符串为 UNICODE 字符串或者宽字节字符串。---> L"中文123" (占10字节) 

由于不同 ANSI 编码所规定的标准是不相同的,因此,对于一个给定的多字节字符串,我们必须知道它采用的是哪一种编码规则,才能够知道它包含了哪些“字符”。而对于 UNICODE 字符串来说,不管在什么环境下,它所代表的“字符”内容总是不变的。 


1.3 字符集与编码 
各个国家和地区所制定的不同 ANSI 编码标准中,都只规定了各自语言所需的“字符”。比如:汉字标准(GB2312)中没有规定韩国语字符怎样存储。这些 ANSI 编码标准所规定的内容包含两层含义: 

使用哪些字符。也就是说哪些汉字,字母和符号会被收入标准中。所包含“字符”的集合就叫做“字符集”。 
规定每个“字符”分别用一个字节还是多个字节存储,用哪些字节来存储,这个规定就叫做“编码”。 
各个国家和地区在制定编码标准的时候,“字符的集合”和“编码”一般都是同时制定的。因此,平常我们所说的“字符集”,比如:GB2312, GBK, JIS 等,除了有“字符的集合”这层含义外,同时也包含了“编码”的含义。 

“UNICODE 字符集”包含了各种语言中使用到的所有“字符”。用来给 UNICODE 字符集编码的标准有很多种,比如:UTF-8, UTF-7, UTF-16, UnicodeLittle, UnicodeBig 等。 


1.4 常用的编码简介 
简单介绍一下常用的编码规则,为后边的章节做一个准备。在这里,我们根据编码规则的特点,把所有的编码分成三类: 

分类 编码标准 说明 
单字节字符编码 ISO-8859-1 最简单的编码规则,每一个字节直接作为一个 UNICODE 字符。比如,[0xD6, 0xD0] 这两个字节,通过 iso-8859-1 转化为字符串时,将直接得到 [0x00D6, 0x00D0] 两个 UNICODE 字符,即 "ÖÐ"。 

反之,将 UNICODE 字符串通过 iso-8859-1 转化为字节串时,只能正常转化 0~255 范围的字符。 
ANSI 编码 GB2312, 
BIG5, 
Shift_JIS, 
ISO-8859-2 …… 把 UNICODE 字符串通过 ANSI 编码转化为“字节串”时,根据各自编码的规定,一个 UNICODE 字符可能转化成一个字节或多个字节。 

反之,将字节串转化成字符串时,也可能多个字节转化成一个字符。比如,[0xD6, 0xD0] 这两个字节,通过 GB2312 转化为字符串时,将得到 [0x4E2D] 一个字符,即 '中' 字。 

“ANSI 编码”的特点: 
1. 这些“ANSI 编码标准”都只能处理各自语言范围之内的 UNICODE 字符。 
2. “UNICODE 字符”与“转换出来的字节”之间的关系是人为规定的。 
UNICODE 编码 UTF-8, 
UTF-16, UnicodeBig …… 与“ANSI 编码”类似的,把字符串通过 UNICODE 编码转化成“字节串”时,一个 UNICODE 字符可能转化成一个字节或多个字节。 

与“ANSI 编码”不同的是: 
1. 这些“UNICODE 编码”能够处理所有的 UNICODE 字符。 
2. “UNICODE 字符”与“转换出来的字节”之间是可以通过计算得到的。 

我们实际上没有必要去深究每一种编码具体把某一个字符编码成了哪几个字节,我们只需要知道“编码”的概念就是把“字符”转化成“字节”就可以了。对于“UNICODE 编码”,由于它们是可以通过计算得到的,因此,在特殊的场合,我们可以去了解某一种“UNICODE 编码”是怎样的规则。 

  
2. 字符与编码在程序中的实现 
2.1 程序中的字符与字节 
在 C++ 和 Java 中,用来代表“字符”和“字节”的数据类型,以及进行编码的方法: 

类型或操作 C++ Java 
字符 wchar_t char 
字节 char byte 
ANSI 字符串 char[] byte[] 
UNICODE 字符串 wchar_t[] String 
字节串→字符串 mbstowcs(), MultiByteToWideChar() string = new String(bytes, "encoding") 
字符串→字节串 wcstombs(), WideCharToMultiByte() bytes = string.getBytes("encoding") 

以上需要注意几点: 

Java 中的 char 代表一个“UNICODE 字符(宽字节字符)”,而 C++ 中的 char 代表一个字节。 
MultiByteToWideChar() 和 WideCharToMultiByte() 是 Windows API 函数。 
  

2.2 C++ 中相关实现方法 
声明一段字符串常量: 

// ANSI 字符串,内容长度 7 字节 
char     sz[20] = "中文123"; 

// UNICODE 字符串,内容长度 5 个 wchar_t(10 字节) 
wchar_t wsz[20] = L"\x4E2D\x6587\x0031\x0032\x0033"; 

UNICODE 字符串的 I/O 操作,字符与字节的转换操作: 

// 运行时设定当前 ANSI 编码,VC 格式 
setlocale(LC_ALL, ".936"); 

// GCC 中格式 
setlocale(LC_ALL, "zh_CN.GBK"); 

// Visual C++ 中使用小写 %s,按照 setlocale 指定编码输出到文件 
// GCC 中使用大写 %S 
fwprintf(fp, L"%s\n", wsz); 

// 把 UNICODE 字符串按照 setlocale 指定的编码转换成字节 
wcstombs(sz, wsz, 20); 
// 把字节串按照 setlocale 指定的编码转换成 UNICODE 字符串 
mbstowcs(wsz, sz, 20); 

在 Visual C++ 中,UNICODE 字符串常量有更简单的表示方法。如果源程序的编码与当前默认 ANSI 编码不符,则需要使用 #pragma setlocale,告诉编译器源程序使用的编码: 

// 如果源程序的编码与当前默认 ANSI 编码不一致, 
// 则需要此行,编译时用来指明当前源程序使用的编码 
#pragma setlocale(".936") 

// UNICODE 字符串常量,内容长度 10 字节 
wchar_t wsz[20] = L"中文123"; 

以上需要注意 #pragma setlocale 与 setlocale(LC_ALL, "") 的作用是不同的,#pragma setlocale 在编译时起作用,setlocale() 在运行时起作用。 


2.3 Java 中相关实现方法 
字符串类 String 中的内容是 UNICODE 字符串: 

// Java 代码,直接写中文 
String string = "中文123"; 

// 得到长度为 5,因为是 5 个字符 
System.out.println(string.length()); 

字符串 I/O 操作,字符与字节转换操作。在 Java 包 java.io.* 中,以“Stream”结尾的类一般是用来操作“字节串”的类,以“Reader”,“Writer”结尾的类一般是用来操作“字符串”的类。 

// 字符串与字节串间相互转化 

// 按照 GB2312 得到字节(得到多字节字符串) 
byte [] bytes = string.getBytes("GB2312"); 

// 从字节按照 GB2312 得到 UNICODE 字符串 
string = new String(bytes, "GB2312"); 

// 要将 String 按照某种编码写入文本文件,有两种方法: 

// 第一种办法:用 Stream 类写入已经按照指定编码转化好的字节串 
OutputStream os = new FileOutputStream("1.txt"); 
os.write(bytes); 
os.close(); 

// 第二种办法:构造指定编码的 Writer 来写入字符串 
Writer ow = new OutputStreamWriter(new FileOutputStream("2.txt"), "GB2312"); 
ow.write(string); 
ow.close(); 

/* 最后得到的 1.txt 和 2.txt 都是 7 个字节 */ 

如果 java 的源程序编码与当前默认 ANSI 编码不符,则在编译的时候,需要指明一下源程序的编码。比如: 

E:\>javac -encoding BIG5 Hello.java 

以上需要注意区分源程序的编码与 I/O 操作的编码,前者是在编译时起作用,后者是在运行时起作用。 


3. 几种误解,以及乱码产生的原因和解决办法 
3.1 容易产生的误解 
  对编码的误解 
误解一 在将“字节串”转化成“UNICODE 字符串”时,比如在读取文本文件时,或者通过网络传输文本时,容易将“字节串”简单地作为单字节字符串,采用每“一个字节”就是“一个字符”的方法进行转化。 

而实际上,在非英文的环境中,应该将“字节串”作为 ANSI 字符串,采用适当的编码来得到 UNICODE 字符串,有可能“多个字节”才能得到“一个字符”。 

通常,一直在英文环境下做开发的程序员们,容易有这种误解。 
误解二 在 DOS,Windows 98 等非 UNICODE 环境下,字符串都是以 ANSI 编码的字节形式存在的。这种以字节形式存在的字符串,必须知道是哪种编码才能被正确地使用。这使我们形成了一个惯性思维:“字符串的编码”。 

当 UNICODE 被支持后,Java 中的 String 是以字符的“序号”来存储的,不是以“某种编码的字节”来存储的,因此已经不存在“字符串的编码”这个概念了。只有在“字符串”与“字节串”转化时,或者,将一个“字节串”当成一个 ANSI 字符串时,才有编码的概念。 

不少的人都有这个误解。 

第一种误解,往往是导致乱码产生的原因。第二种误解,往往导致本来容易纠正的乱码问题变得更复杂。 

在这里,我们可以看到,其中所讲的“误解一”,即采用每“一个字节”就是“一个字符”的转化方法,实际上也就等同于采用 iso-8859-1 进行转化。因此,我们常常使用 bytes = string.getBytes("iso-8859-1") 来进行逆向操作,得到原始的“字节串”。然后再使用正确的 ANSI 编码,比如 string = new String(bytes, "GB2312"),来得到正确的“UNICODE 字符串”。 


3.2 非 UNICODE 程序在不同语言环境间移植时的乱码 
非 UNICODE 程序中的字符串,都是以某种 ANSI 编码形式存在的。如果程序运行时的语言环境与开发时的语言环境不同,将会导致 ANSI 字符串的显示失败。

比如,在日文环境下开发的非 UNICODE 的日文程序界面,拿到中文环境下运行时,界面上将显示乱码。如果这个日文程序界面改为采用 UNICODE 来记录字符串,那么当在中文环境下运行时,界面上将可以显示正常的日文。 

由于客观原因,有时候我们必须在中文操作系统下运行非 UNICODE 的日文软件,这时我们可以采用一些工具,比如,南极星,AppLocale 等,暂时的模拟不同的语言环境。 


3.3 网页提交字符串 
当页面中的表单提交字符串时,首先把字符串按照当前页面的编码,转化成字节串。然后再将每个字节转化成 "%XX" 的格式提交到 Web 服务器。比如,一个编码为 GB2312 的页面,提交 "中" 这个字符串时,提交给服务器的内容为 "%D6%D0"。 

在服务器端,Web 服务器把收到的 "%D6%D0" 转化成 [0xD6, 0xD0] 两个字节,然后再根据 GB2312 编码规则得到 "中" 字。 

在 Tomcat 服务器中,request.getParameter() 得到乱码时,常常是因为前面提到的“误解一”造成的。默认情况下,当提交 "%D6%D0" 给 Tomcat 服务器时,request.getParameter() 将返回 [0x00D6, 0x00D0] 两个 UNICODE 字符,而不是返回一个 "中" 字符。因此,我们需要使用 bytes = string.getBytes("iso-8859-1") 得到原始的字节串,再用 string = new String(bytes, "GB2312") 重新得到正确的字符串 "中"。 


3.4 从数据库读取字符串 
通过数据库客户端(比如 ODBC 或 JDBC)从数据库服务器中读取字符串时,客户端需要从服务器获知所使用的 ANSI 编码。当数据库服务器发送字节流给客户端时,客户端负责将字节流按照正确的编码转化成 UNICODE 字符串。 

如果从数据库读取字符串时得到乱码,而数据库中存放的数据又是正确的,那么往往还是因为前面提到的“误解一”造成的。解决的办法还是通过 string = new String( string.getBytes("iso-8859-1"), "GB2312") 的方法,重新得到原始的字节串,再重新使用正确的编码转化成字符串。 


3.5 电子邮件中的字符串 
当一段 Text 或者 HTML 通过电子邮件传送时,发送的内容首先通过一种指定的字符编码转化成“字节串”,然后再把“字节串”通过一种指定的传输编码(Content-Transfer-Encoding)进行转化得到另一串“字节串”。比如,打开一封电子邮件源代码,可以看到类似的内容: 

Content-Type: text/plain; 
        charset="gb2312" 
Content-Transfer-Encoding: base64 

sbG+qcrQuqO17cf4yee74bGjz9W7+b3wudzA7dbQ0MQNCg0KvPKzxqO6uqO17cnnsaPW0NDEDQoNCg== 

最常用的 Content-Transfer-Encoding 有 Base64 和 Quoted-Printable 两种。在对二进制文件或者中文文本进行转化时,Base64 得到的“字节串”比 Quoted-Printable 更短。在对英文文本进行转化时,Quoted-Printable 得到的“字节串”比 Base64 更短。 

邮件的标题,用了一种更简短的格式来标注“字符编码”和“传输编码”。比如,标题内容为 "中",则在邮件源代码中表示为: 

// 正确的标题格式 
Subject: =?GB2312?B?1tA=?= 

其中, 

第一个“=?”与“?”中间的部分指定了字符编码,在这个例子中指定的是 GB2312。 
“?”与“?”中间的“B”代表 Base64。如果是“Q”则代表 Quoted-Printable。 
最后“?”与“?=”之间的部分,就是经过 GB2312 转化成字节串,再经过 Base64 转化后的标题内容。 
如果“传输编码”改为 Quoted-Printable,同样,如果标题内容为 "中": 

// 正确的标题格式 
Subject: =?GB2312?Q?=D6=D0?= 

如果阅读邮件时出现乱码,一般是因为“字符编码”或“传输编码”指定有误,或者是没有指定。比如,有的发邮件组件在发送邮件时,标题 "中": 

// 错误的标题格式 
Subject: =?ISO-8859-1?Q?=D6=D0?= 

这样的表示,实际上是明确指明了标题为 [0x00D6, 0x00D0],即 "ÖÐ",而不是 "中"。 

  
4. 几种错误理解的纠正 
误解:“ISO-8859-1 是国际编码?” 
非也。iso-8859-1 只是单字节字符集中最简单的一种,也就是“字节编号”与“UNICODE 字符编号”一致的那种编码规则。当我们要把一个“字节串”转化成“字符串”,而又不知道它是哪一种 ANSI 编码时,先暂时地把“每一个字节”作为“一个字符”进行转化,不会造成信息丢失。然后再使用 bytes = string.getBytes("iso-8859-1") 的方法可恢复到原始的字节串。 

误解:“Java 中,怎样知道某个字符串的内码?” 
Java 中,字符串类 java.lang.String 处理的是 UNICODE 字符串,不是 ANSI 字符串。我们只需要把字符串作为“抽象的符号的串”来看待。因此不存在字符串的内码的问题。 

原创文章,转载请保留或注明出处:http://www.regexlab.com/zh/encoding.htm]

分享到:
评论

相关推荐

    毕业设计选题 -未来生鲜运输车设计.pptx

    毕业设计选题 -未来生鲜运输车设计.pptx

    基于樽海鞘算法优化的极限学习机回归预测及其与BP、GRNN、ELM的性能对比研究

    内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。

    2025年中国生成式AI大会PPT(4-1)

    2025年中国生成式AI大会PPT(4-1)

    无刷直流电机双闭环调速系统的Simulink建模与参数优化

    内容概要:本文详细介绍了基于Simulink平台构建无刷直流电机(BLDC)双闭环调速系统的全过程。首先阐述了双闭环控制系统的基本架构,即外层速度环和内层电流环的工作原理及其相互关系。接着深入探讨了PWM生成模块的设计,特别是占空比计算方法的选择以及三角波频率的设定。文中还提供了详细的电机参数设置指导,如转动惯量、电感、电阻等,并强调了参数选择对系统性能的影响。此外,针对PI控制器的参数整定给出了具体的公式和经验值,同时分享了一些实用的调试技巧,如避免转速超调、处理启动抖动等问题的方法。最后,通过仿真实验展示了系统的稳定性和鲁棒性,验证了所提出方法的有效性。 适用人群:从事电机控制研究的技术人员、自动化工程领域的研究生及科研工作者。 使用场景及目标:适用于需要深入了解和掌握无刷直流电机双闭环调速系统设计与优化的人群。主要目标是帮助读者学会利用Simulink进行BLDC电机控制系统的建模、仿真和参数优化,从而提高系统的稳定性和响应速度。 其他说明:文章不仅提供了理论知识,还包括了许多实践经验和技术细节,有助于读者更好地理解和应用相关技术。

    西门子S7-1200 PLC与施耐德变频器Modbus通讯实现及调试技巧

    内容概要:本文详细介绍了西门子S7-1200 PLC与施耐德ATV310/312变频器通过Modbus RTU进行通讯的具体实现步骤和调试技巧。主要内容涵盖硬件接线、通讯参数配置、控制启停、设定频率、读取运行参数的方法以及常见的调试问题及其解决方案。文中提供了具体的代码示例,帮助读者理解和实施通讯程序。此外,还强调了注意事项,如地址偏移量、数据格式转换和超时匹配等。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些需要将西门子PLC与施耐德变频器进行集成的工作人员。 使用场景及目标:适用于需要通过Modbus RTU协议实现PLC与变频器通讯的工程项目。目标是确保通讯稳定可靠,掌握解决常见问题的方法,提高调试效率。 其他说明:文中提到的实际案例和调试经验有助于读者避免常见错误,快速定位并解决问题。建议读者在实践中结合提供的代码示例和调试工具进行操作。

    基于FPGA的Verilog实现IIC主从机驱动及其应用

    内容概要:本文详细介绍了如何使用Verilog在FPGA上实现IIC(Inter-Integrated Circuit)主从机驱动。主要内容包括从机和主机的设计,特别是状态机的实现、寄存器读取、时钟分频策略、SDA线的三态控制等关键技术。文中还提供了详细的代码片段,展示了从机地址匹配逻辑、主机时钟生成逻辑、顶层模块的连接方法以及仿真实验的具体步骤。此外,文章讨论了一些常见的调试问题,如总线竞争、时序不匹配等,并给出了相应的解决方案。 适合人群:具备一定FPGA开发基础的技术人员,尤其是对IIC协议感兴趣的嵌入式系统开发者。 使用场景及目标:适用于需要在FPGA平台上实现高效、可靠的IIC通信的应用场景。主要目标是帮助读者掌握IIC协议的工作原理,能够独立完成IIC主从机系统的开发和调试。 其他说明:文章不仅提供了理论讲解,还包括了大量的实战经验和代码实例,有助于读者更好地理解和应用所学知识。同时,文章还提供了一个思考题,引导读者进一步探索多主设备仲裁机制的设计思路。

    C#开发的拖拽式Halcon可视化抓边抓圆控件,提升机器视觉测量效率

    内容概要:本文介绍了一款基于C#开发的拖拽式Halcon可视化抓边、抓圆控件,旨在简化机器视觉项目中的测量任务。该控件通过拖拽操作即可快速生成测量区域,自动完成边缘坐标提取,并提供实时反馈。文中详细描述了控件的工作原理和技术细节,如坐标系转换、卡尺生成、边缘检测算法封装以及动态参数调试等功能。此外,还讨论了一些常见问题及其解决方案,如坐标系差异、内存管理等。 适合人群:从事机器视觉开发的技术人员,尤其是熟悉C#和Halcon的开发者。 使用场景及目标:适用于需要频繁进行边缘和圆形特征测量的工业自动化项目,能够显著提高测量效率并减少编码工作量。主要目标是将复杂的测量任务转化为简单的拖拽操作,使非专业人员也能轻松完成测量配置。 其他说明:该控件已开源发布在GitHub上,提供了完整的源代码和详细的使用指南。未来计划扩展更多高级功能,如自动路径规划和亚像素级齿轮齿距检测等。

    西门子200Smart与维纶触摸屏在疫苗车间控制系统的应用:配液、发酵、纯化及CIP清洗工艺详解

    内容概要:本文详细介绍了西门子200Smart PLC与维纶触摸屏在某疫苗车间控制系统的具体应用,涵盖配液、发酵、纯化及CIP清洗四个主要工艺环节。文中不仅展示了具体的编程代码和技术细节,还分享了许多实战经验和调试技巧。例如,在配液罐中,通过模拟量处理确保温度和液位的精确控制;发酵罐部分,着重讨论了PID参数整定和USS通讯控制变频器的方法;纯化过程中,强调了双PID串级控制的应用;CIP清洗环节,则涉及复杂的定时器逻辑和阀门联锁机制。此外,文章还提到了一些常见的陷阱及其解决方案,如通讯干扰、状态机切换等问题。 适合人群:具有一定PLC编程基础的技术人员,尤其是从事工业自动化领域的工程师。 使用场景及目标:适用于需要深入了解PLC与触摸屏集成控制系统的工程师,帮助他们在实际项目中更好地理解和应用相关技术和方法,提高系统的稳定性和可靠性。 其他说明:文章提供了大量实战经验和代码片段,有助于读者快速掌握关键技术点,并避免常见错误。同时,文中提到的一些优化措施和调试技巧对提升系统性能非常有帮助。

    计算机网络结课设计:通过思科Cisco进行中小型校园网搭建

    计算机网络课程的结课设计是使用思科模拟器搭建一个中小型校园网,当时花了几天时间查阅相关博客总算是做出来了,现在免费上传CSDN,希望小伙伴们能给博客一套三连支持

    芋道(yudao)开发技术文档

    《芋道开发指南文档-2023-10-27更新》是针对软件开发者和IT专业人士的一份详尽的资源集合,旨在提供最新的开发实践、范例代码和最佳策略。这份2023年10月27日更新的文档集,包含了丰富的模板和素材,帮助开发者在日常工作中提高效率,保证项目的顺利进行。 让我们深入探讨这份文档的可能内容。"芋道"可能是一个开源项目或一个专业的技术社区,其开发指南涵盖了多个方面,例如: 1. **编程语言指南**:可能包括Java、Python、JavaScript、C++等主流语言的编码规范、最佳实践以及常见问题的解决方案。 2. **框架与库的应用**:可能会讲解React、Vue、Angular等前端框架,以及Django、Spring Boot等后端框架的使用技巧和常见应用场景。 3. **数据库管理**:涵盖了SQL语言的基本操作,数据库设计原则,以及如何高效使用MySQL、PostgreSQL、MongoDB等数据库系统。 4. **版本控制**:详细介绍了Git的工作流程,分支管理策略,以及与其他开发工具(如Visual Studio Code、IntelliJ IDEA)的集成。 5. **持续集成与持续部署(CI/CD)**:包括Jenkins、Travis CI、GitHub Actions等工具的配置和使用,以实现自动化测试和部署。 6. **云服务与容器化**:可能涉及AWS、Azure、Google Cloud Platform等云计算平台的使用,以及Docker和Kubernetes的容器化部署实践。 7. **API设计与测试**:讲解RESTful API的设计原则,Swagger的使用,以及Postman等工具进行API测试的方法。 8. **安全性与隐私保护**:涵盖OAuth、JWT认证机制,HTTPS安全通信,以及防止SQL注入、

    基于信息间隙决策的综合能源系统优化调度模型及其应用

    内容概要:本文介绍了一种先进的综合能源系统优化调度模型,该模型将风电、光伏、光热发电等新能源与燃气轮机、燃气锅炉等传统能源设备相结合,利用信息间隙决策(IGDT)处理不确定性。模型中引入了P2G(电转气)装置和碳捕集技术,实现了碳经济闭环。通过多能转换和储能系统的协同调度,提高了系统的灵活性和鲁棒性。文中详细介绍了模型的关键组件和技术实现,包括IGDT的鲁棒性参数设置、P2G与碳捕集的协同控制、储能系统的三维协同调度等。此外,模型展示了在极端天气和负荷波动下的优异表现,显著降低了碳排放成本并提高了能源利用效率。 适合人群:从事能源系统优化、电力调度、碳交易等相关领域的研究人员和工程师。 使用场景及目标:适用于需要处理多种能源形式和不确定性的综合能源系统调度场景。主要目标是提高系统的灵活性、鲁棒性和经济效益,减少碳排放。 其他说明:模型具有良好的扩展性,可以通过修改配置文件轻松集成新的能源设备。代码中包含了详细的注释和公式推导,便于理解和进一步改进。

    毕业设计的论文撰写、终期答辩相关的资源.m

    毕业设计的论文撰写、终期答辩相关的资源

    机器学习(预测模型):专注于 2024 年出现的漏洞(CVE)信息数据集

    该是一个在 Kaggle 上发布的数据集,专注于 2024 年出现的漏洞(CVE)信息。以下是关于该数据集的详细介绍:该数据集收集了 2024 年记录在案的各类漏洞信息,涵盖了漏洞的利用方式(Exploits)、通用漏洞评分系统(CVSS)评分以及受影响的操作系统(OS)。通过整合这些信息,研究人员和安全专家可以全面了解每个漏洞的潜在威胁、影响范围以及可能的攻击途径。数据主要来源于权威的漏洞信息平台,如美国国家漏洞数据库(NVD)等。这些数据经过整理和筛选后被纳入数据集,确保了信息的准确性和可靠性。数据集特点:全面性:涵盖了多种操作系统(如 Windows、Linux、Android 等)的漏洞信息,反映了不同平台的安全状况。实用性:CVSS 评分提供了漏洞严重程度的量化指标,帮助用户快速评估漏洞的优先级。同时,漏洞利用信息(Exploits)为安全研究人员提供了攻击者可能的攻击手段,有助于提前制定防御策略。时效性:专注于 2024 年的漏洞数据,反映了当前网络安全领域面临的新挑战和新趋势。该数据集可用于多种研究和实践场景: 安全研究:研究人员可以利用该数据集分析漏洞的分布规律、攻击趋势以及不同操作系统之间的安全差异,为网络安全防护提供理论支持。 机器学习与数据分析:数据集中的结构化信息适合用于机器学习模型的训练,例如预测漏洞的 CVSS 评分、识别潜在的高危漏洞等。 企业安全评估:企业安全团队可以参考该数据集中的漏洞信息,结合自身系统的实际情况,进行安全评估和漏洞修复计划的制定。

    建模大赛入门指南:从零基础到实战应用.pdf

    内容概要:本文档作为建模大赛的入门指南,详细介绍了建模大赛的概念、类型、竞赛流程、核心步骤与技巧,并提供实战案例解析。文档首先概述了建模大赛,指出其以数学、计算机技术为核心,主要分为数学建模、3D建模和AI大模型竞赛三类。接着深入解析了数学建模竞赛,涵盖组队策略(如三人分别负责建模、编程、论文写作)、时间安排(72小时内完成全流程)以及问题分析、模型建立、编程实现和论文撰写的要点。文中还提供了物流路径优化的实战案例,展示了如何将实际问题转化为图论问题并采用Dijkstra或蚁群算法求解。最后,文档推荐了不同类型建模的学习资源与工具,并给出了新手避坑建议,如避免过度复杂化模型、重视可视化呈现等。; 适合人群:对建模大赛感兴趣的初学者,特别是高校学生及希望参与数学建模竞赛的新手。; 使用场景及目标:①了解建模大赛的基本概念和分类;②掌握数学建模竞赛的具体流程与分工;③学习如何将实际问题转化为数学模型并求解;④获取实战经验和常见错误规避方法。; 其他说明:文档不仅提供了理论知识,还结合具体实例和代码片段帮助读者更好地理解和实践建模过程。建议新手从中小型赛事开始积累经验,逐步提升技能水平。

    protobuf-6.30.1-cp310-abi3-win32.whl

    该资源为protobuf-6.30.1-cp310-abi3-win32.whl,欢迎下载使用哦!

    大数据环境构建:从虚拟机创建到Ambari集群部署的技术指南

    内容概要:本文档详细介绍了基于Linux系统的大数据环境搭建流程,涵盖从虚拟机创建到集群建立的全过程。首先,通过一系列步骤创建并配置虚拟机,包括设置IP地址、安装MySQL数据库等操作。接着,重点讲解了Ambari的安装与配置,涉及关闭防火墙、设置免密登录、安装时间同步服务(ntp)、HTTP服务以及配置YUM源等关键环节。最后,完成了Ambari数据库的创建、JDK的安装、Ambari server和agent的部署,并指导用户创建集群。整个过程中还提供了针对可能出现的问题及其解决方案,确保各组件顺利安装与配置。 适合人群:具有Linux基础操作技能的数据工程师或运维人员,尤其是那些需要构建和管理大数据平台的专业人士。 使用场景及目标:适用于希望快速搭建稳定可靠的大数据平台的企业或个人开发者。通过本指南可以掌握如何利用Ambari工具自动化部署Hadoop生态系统中的各个组件,从而提高工作效率,降低维护成本。 其他说明:文档中包含了大量具体的命令行指令和配置细节,建议读者按照顺序逐步操作,并注意记录下重要的参数值以便后续参考。此外,在遇到问题时可参照提供的解决方案进行排查,必要时查阅官方文档获取更多信息。

    MATLAB中基于LMS算法的一维时间序列信号降噪技术及其实现

    内容概要:本文详细介绍了如何在MATLAB R2018A中使用最小均方(LMS)自适应滤波算法对一维时间序列信号进行降噪处理,特别是针对心电图(ECG)信号的应用。首先,通过生成模拟的ECG信号并加入随机噪声,创建了一个带有噪声的时间序列。然后,实现了LMS算法的核心部分,包括滤波器阶数、步长参数的选择以及权重更新规则的设计。文中还提供了详细的代码示例,展示了如何构建和训练自适应滤波器,并通过图形化方式比较了原始信号、加噪信号与经过LMS处理后的降噪信号之间的差异。此外,作者分享了一些实用的经验和技术要点,如参数选择的影响、误差曲线的解读等。 适用人群:适用于具有一定MATLAB编程基础并对信号处理感兴趣的科研人员、工程师或学生。 使用场景及目标:本教程旨在帮助读者掌握LMS算法的基本原理及其在实际项目中的应用方法,特别是在生物医学工程、机械故障诊断等领域中处理含噪信号的任务。同时,也为进一步探索其他类型的自适应滤波技术和扩展到不同的信号处理任务奠定了基础。 其他说明:尽管LMS算法在处理平稳噪声方面表现出色,但在面对突发性的强干扰时仍存在一定局限性。因此,在某些特殊场合下,可能需要与其他滤波技术相结合以获得更好的效果。

    基于TMS320F2812的光伏并网逆变器设计与MATLAB仿真及DSP代码实现

    内容概要:本文详细介绍了基于TMS320F2812 DSP芯片的光伏并网逆变器设计方案,涵盖了主电路架构、控制算法、锁相环实现、环流抑制等多个关键技术点。首先,文中阐述了双级式结构的主电路设计,前级Boost升压将光伏板输出电压提升至约600V,后级采用三电平NPC拓扑的IGBT桥进行逆变。接着,深入探讨了核心控制算法,如电流PI调节器、锁相环(SOFGI)、环流抑制等,并提供了详细的MATLAB仿真模型和DSP代码实现。此外,还特别强调了PWM死区时间配置、ADC采样时序等问题的实际解决方案。最终,通过实验验证,该方案实现了THD小于3%,MPPT效率达98.7%,并有效降低了并联环流。 适合人群:从事光伏并网逆变器开发的电力电子工程师和技术研究人员。 使用场景及目标:适用于光伏并网逆变器的研发阶段,帮助工程师理解和实现高效稳定的逆变器控制系统,提高系统的性能指标,减少开发过程中常见的错误。 其他说明:文中提供的MATLAB仿真模型和DSP代码可以作为实际项目开发的重要参考资料,有助于缩短开发周期,提高成功率。

    三菱FX3U PLC在六轴自动包装机中的伺服控制与定位程序解析

    内容概要:本文详细解析了三菱FX3U PLC在六轴自动包装机中的应用,涵盖硬件配置、程序框架、伺服定位控制、手自动切换逻辑、功能块应用以及报警处理等方面。硬件方面,采用FX3U-48MT主模块自带三轴脉冲输出,配合三个FX3UG-1PG模块扩展定位功能,使用六个MR-JE-20A伺服驱动器和16点输入扩展模块进行传感器采集。程序框架主要由初始化、模式切换、六轴控制和异常处理组成。伺服定位使用DRVA指令实现双速定位模式,手自动切换逻辑通过功能块封装,确保模式切换顺畅。报警处理模块则利用矩阵扫描方式压缩报警信号,提高IO利用率。此外,程序还包括状态监控设计和原点回归等功能。 适合人群:具备一定PLC编程基础,从事自动化控制领域的工程师和技术人员。 使用场景及目标:适用于六轴自动包装机的设计与调试,帮助工程师理解和掌握三菱FX3U PLC在包装机械中的具体应用,提升系统的可靠性和效率。 其他说明:文中提供了详细的代码示例和注意事项,有助于新手避免常见错误并优化程序性能。

    PPTJAVA编程190

    PPTJAVA编程190

Global site tag (gtag.js) - Google Analytics