还记得那个叫做 Justice Gray 的人么?他曾经试图在六个月的时间里面成为更好的程序员,这种做法似乎成为了一种众人追捧的时尚。
然而很长一段时间过去之后,其中的大部分人并没有如愿以偿的成为好的程序员。
这里提供给大家一个简单的解决方案,有一些方法可以让你在六分钟之内成为更优秀的程序员。
你有六分钟的闲暇时光,对么?
我们一起来吧!
1. 使用更大的显示字体
这个办法看上去非常简单,但是的确很有效果。
打开你最喜欢的那个编程工具,将代码编辑器中的字体调大。我把 10pt 的代码显示字体增大到 14pt,这样一来,你的屏幕上一次只能显示出少量的代码。
结果:你被迫去写一些更为短小精炼的函数,这无疑是一个好的趋势。
(Scott Hanselman 也推崇这样的做法)
2. 让代码中的硬编码字符串部分显示变得刺眼
我是从 Joe Cooney 那里学到这种办法。
在你最熟悉的那个编程工具中将代码编辑器中的字符串设置为更加显眼的格式——比如,红色字符黄色背景。让那些字符串显得非常丑陋、刺眼。这将使你在代码中下意识的少写一些硬编码字符串,并且时刻注意代码中嵌入的字符串。

3. 找出一个“模糊”的关键字,通过学习熟练掌握
你是否明白 "yield" 关键字的作用? 还有什么关键字是你从来没有使用过的么?
编程语言中每一个关键字都有其特殊的用途。学习并掌握这些“神秘”的陌生关键字可以使你的编程能力变得异常强大。
这里有一些 .NET 平台不同语言的关键字列表: C#, VB.net, F#.
4. 提高1%的测试代码覆盖率
不要为了追求 100% 的自动化单元测试代码覆盖率而焦头烂额,但是不妨花费一些时间将你的测试代码覆盖率提高一个百分点。
有可能对你来说,这就是从 0% 到 1% 的过程,然而这已经是一个巨大的进步。
代码中复杂的正则表达式或者重要的业务逻辑必需要有单元测试来确保正确无误。
5. 阅读一些开源项目的源代码
当我看到一段完全陌生的代码的时候,通常会有一种奇怪的感觉:似乎是溜进了邻居家的屋子,并且窥视他们家冰箱里面的物品。
我们需要慢慢适应这样的情绪,并且从他人的代码中学习。
也许你可以从这个 Hanselman's Weekly Source Code 系列开始。
6. 使用静态代码分析工具来检查自己的代码
你可以使用 fxcop, 或者 StyleCop、 clone detective、 ndepend、 Visual Studio 2008 附带的 code metrics feature, 或者其他自选的静态代码分析工具。
使用这些工具可以发现隐匿在你的代码深处的缺陷。哪怕仅仅是瞥一眼分析结果,也可以让你发现自己的代码还存在很多可以改进的地方。
7. 找出有“坏味道”的代码进行重构
其实你自己心理清楚那些“坏味道”在哪里——就是你羞于承认,看上去很可怕,又臭又长,同时对整个应用非常重要的代码。
你不必把那些朽木雕琢成钻石,但是可以把他们变得稍微干净一些——重新命名一些变量,或者将其中的一部分代码独立出来,从简单的操作开始,小心翼翼逐步推进。
8. 停止阅读,开始编码
不要仅仅是写那些简单重复的代码,写一个编译器吧!
这篇 ol 写的 MSDN上 的文章 是一个非常好的起点。Joel Pobar 将指导你在短时间内写出一个属于自己的语言的编译器。
以上这些就是成为优秀程序员的方法,你明白了么?
有什么方法可以在六分钟之内完成,并且帮助你成为更优秀的程序员么?
分享到:
相关推荐
本文将依据“六分钟八法则塑造优秀程序员”的理念,对这八条法则进行详细阐述,帮助程序员在有限的时间内实现质的飞跃。 首先,**使用更大的显示字体**不仅能够缓解长时间编程所带来的视觉疲劳,而且能够迫使程序员...
数据结构与算法是计算机科学的基础,对于任何编程和软件开发工作来说,它们都是至关重要的。在本课件“数据结构课件—...通过本课件的学习,你将掌握这些核心概念,并能应用于各种实际场景,成为一名更加优秀的程序员。
vue3 访问通义千问聊天代码例子
基于Python的Flask-vue基于Hadoop的智慧校园数据共享平台实现源码-演示视频 项目关键技术 开发工具:Pycharm 编程语言: python 数据库: MySQL5.7+ 后端技术:Flask 前端技术:HTML 关键技术:HTML、MYSQL、Python 数据库工具:Navicat、SQLyog
【实验1】:读取一次AI0通道数值 【实验2】:一次读取AI0通道多个数值 【实验3】:单次模拟量输出 【实验4】:连续模拟量输出(输出一个正弦曲线)
无人船的Smith-PID跟踪控制方法研究及实现:融合传统与最优PID策略的LOS曲线跟踪资料,基于无人船Smith-PID改进跟踪控制技术及其LOS曲线跟踪方法研究资料,基于无人船的smith-pid跟踪控制资料。 首先,针对pid进行了改进,有传统pid,最优pid和基于smith的pid三种控制方式。 然后还在smithpid基础上设计了LOS的曲线跟踪方法。 (有对应参考文献)。 有意者可直接联系,参考学习资料。 python语言。 ,基于无人船的Smith-PID跟踪控制; PID改进(传统PID、最优PID、基于Smith的PID); Smith-PID曲线跟踪方法; 参考学习资料; Python语言。,基于无人船的Smith-PID优化跟踪控制资料
自研船舶电力推进系统MATLAB仿真报告:从柴油机+同步发电机到异步电机直接转矩控制的全面模拟与实践,《船舶电力推进系统自搭MATLAB仿真报告:从柴油机同步发电机到异步电机直接转矩控制的完整过程与参数配置详解》,自己搭建的船舶电力推进系统(船舶电力推进自动控制)完全自搭MATLAB仿真,可适度,含对应27页正文的中文报告,稀缺资源,仿真包括船舶电站,变流系统和异步电机直接转矩控制,放心用吧。 三个文件逐层递进 柴油机+同步发电机(船舶电站) 柴油机+同步发电机+不控整流全桥逆变 柴油机+同步发电机+变流模块+异步电机直接转矩控制 所有参数都是配好的,最大负载参考变流系统所带负载两倍,再大柴油机和同步发电机参数就不匹配了,有能力可以自己调 ,核心关键词:船舶电力推进系统; MATLAB仿真; 船舶电站; 变流系统; 异步电机直接转矩控制; 柴油机; 同步发电机; 不控整流全桥逆变; 参数配比。,《船舶电力推进系统MATLAB仿真报告》
西门子博图WinCC V15自动化系统项目实战:多服务器客户端下的PID DCS闭环控制及参数调整实战指南,西门子博图WinCC V15自动化系统项目实战:多服务器客户端下的PID DCS闭环控制及参数调整实战指南,西门子博图WinCC V 15大型自动化系统项目,包含多台服务器客户端项目,系统采用安全1516F -3PN DP 外挂多台精智面板,1200PLC ET200SP 变频器 对整个工艺过程PID DCS 闭环过程控制,如何调整温度压力流量液位等参数,实用工程项目案例 ,西门子博图WinCC V 15; 大型自动化系统; 多台服务器客户端; 安全外挂; 精智面板; 1200PLC ET200SP; 变频器; PID DCS; 闭环过程控制; 温度压力流量液位调整; 工程项目案例,西门子博图WinCC V15大型项目:多服务器客户端的PID DCS闭环控制与实用参数调整
内容概要:本文详尽介绍了计算机网络相关资源及其各方面构成要素,首先阐述了硬件层面的各种传输媒介和设备如双绞线、同轴电缆、光纤以及台式电脑、笔记本、大型计算机等设备,还包括网络互联所需的各类组件如网卡、交换机、路由器等。其次探讨了多种操作系统的特性和主要功能,以及各类通讯和支持应用程序的概述,涵盖浏览器、图像和视频编辑等常用软件。再深入讨论了多种常见网络协议如TCP、UDP、HTTP等的功能特性。最后还提到了确保网络安全运行的重要措施和工具如MIB、SNMP以及防火墙、入侵检测系统等。并且简要提到计算机网络在不同的应用环境,从局域网到移动网络。 适合人群:所有对计算机网络技术感兴趣的初学者和希望深入了解各个组成成分的技术人员. 使用场景及目标:为用户提供计算机网络资源全面而系统的认识,帮助他们建立对于该领域的理论和技术的扎实认知基础,提高在实际环境中识别配置及维护计算机网络系统的能力.
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
ABAQUS中隧道结构模型的无限元应用:超声激励源的施加方法、3D无限元吸收边界的添加技巧、模型结果精确性校核流程及教学视频与CAE、INP文件解析,ABAQUS隧道模型中3D无限元吸收边界的应用:超声激励源的施加与模型结果精确性校核的实践教程,ABAQUS无限元吸收边界,abaqus隧道无限元,1.超声激励源施加;2.3D无限元吸收边界添加方法;3.模型结果精确性校核;4.提供教学视频,cae、inp文件。 ,ABAQUS无限元吸收边界;ABAQUS隧道无限元;超声激励源施加;3D无限元吸收边界添加;模型结果精确性校核;CAE和INP文件。,ABAQUS中超声激励下无限元吸收边界设置及模型精度验证教程
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
git自用lllllllllllllllllll
本资源与文章【Django小白项目】为一体,此为已成功项目,供给给Django初学者做参考,有不会的问题可以私信我噢~
使用一维数据表示向量和二维矩阵,支持常用运算。
1、以上文章可用于参考,请勿直接抄袭,学习、当作参考文献可以,主张借鉴学习 2、资源本身不含 对应项目代码,如需完整项目源码,请私信博主获取
基于多目标粒子群优化算法(MOPSO)的微电网多目标经济运行分析与优化策略考虑响应侧响应的协同调度策略,基于多目标粒子群优化算法(MOPSO)的微电网经济调度优化:含风光储荷一体化模型与需求侧响应策略,考虑需求侧响应的微电网多目标经济运行 建立了含风光储荷的微电网模型,以发电侧成本(包括风光储以及电网的购电成本)和负荷侧成本最小为目标,考虑功率平衡以及储能SOC约束,建立了多目标优化模型,通过分时电价引导负荷需求侧响应,得到可削减负荷量,同时求解模型,得到风光储以及电网的运行计划。 这段代码是一个使用多目标粒子群优化算法(MOPSO)解决问题的程序。下面我将对程序进行详细的分析和解释。 首先,程序的目标是通过优化算法来解决一个多目标优化问题。程序中使用的优化算法是多目标粒子群优化算法(MOPSO),该算法通过迭代更新粒子的位置和速度来搜索最优解。 程序的主要功能是对能源系统进行优化调度,包括光伏发电、风力发电、储能和电网供电。程序的目标是最小化能源系统的成本,并满足负荷需求。 程序的主要思路是使用粒子群优化算法来搜索最优解。程序中定义了一个粒子类(Particle),每个粒子代