`

(转)java自带线程池和队列详细讲解

 
阅读更多

简介

 

线程的使用在java中占有极其重要的地位,在jdk1.4极其之前的jdk版本中,关于线程池的使用是极其简陋的。在jdk1.5之后这一情况有了很大的改观。Jdk1.5之后加入了java.util.concurrent包,这个包中主要介绍java中线程以及线程池的使用。为我们在开发中处理线程的问题提供了非常大的帮助。

 

二:线程池

 

线程池的作用:

 

线程池作用就是限制系统中执行线程的数量。
    
根 据系统的环境情况,可以自动或手动设置线程数量,达到运行的最佳效果;少了浪费了系统资源,多了造成系统拥挤效率不高。用线程池控制线程数量,其他线程排 队等候。一个任务执行完毕,再从队列的中取最前面的任务开始执行。若队列中没有等待进程,线程池的这一资源处于等待。当一个新任务需要运行时,如果线程池 中有等待的工作线程,就可以开始运行了;否则进入等待队列。

 

为什么要用线程池:

 

1.减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。

 

2.可以根据系统的承受能力,调整线程池中工作线线程的数目,防止因为消耗过多的内存,而把服务器累趴下(每个线程需要大约1MB内存,线程开的越多,消耗的内存也就越大,最后死机)

 

Java里面线程池的顶级接口是Executor,但是严格意义上讲Executor并不是一个线程池,而只是一个执行线程的工具。真正的线程池接口是ExecutorService

 

比较重要的几个类:

 

ExecutorService

真正的线程池接口。

ScheduledExecutorService

能和Timer/TimerTask类似,解决那些需要任务重复执行的问题。

ThreadPoolExecutor

ExecutorService的默认实现。

ScheduledThreadPoolExecutor

继承ThreadPoolExecutorScheduledExecutorService接口实现,周期性任务调度的类实现。

 

要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,很有可能配置的线程池不是较优的,因此在Executors类里面提供了一些静态工厂,生成一些常用的线程池。

 

1. newSingleThreadExecutor

 

创建一个单线程的线程池。这个线程池只有一个线程在工作,也就是相当于单线程串行执行所有任务。如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。

 

2.newFixedThreadPool

 

创建固定大小的线程池。每次提交一个任务就创建一个线程,直到线程达到线程池的最大大小。线程池的大小一旦达到最大值就会保持不变,如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。

 

3. newCachedThreadPool

 

创建一个可缓存的线程池。如果线程池的大小超过了处理任务所需要的线程,

 

那么就会回收部分空闲(60秒不执行任务)的线程,当任务数增加时,此线程池又可以智能的添加新线程来处理任务。此线程池不会对线程池大小做限制,线程池大小完全依赖于操作系统(或者说JVM)能够创建的最大线程大小。

 

4.newScheduledThreadPool

 

创建一个大小无限的线程池。此线程池支持定时以及周期性执行任务的需求。

 

实例

 

1newSingleThreadExecutor

 

MyThread.java

 

publicclassMyThread extends Thread {

    @Override

    publicvoid run() {

        System.out.println(Thread.currentThread().getName() + "正在执行。。。");

    }

}

 

TestSingleThreadExecutor.java

 

publicclassTestSingleThreadExecutor {

    publicstaticvoid main(String[] args) {

        //创建一个可重用固定线程数的线程池

        ExecutorService pool = Executors. newSingleThreadExecutor();

        //创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口

        Thread t1 = new MyThread();

        Thread t2 = new MyThread();

        Thread t3 = new MyThread();

        Thread t4 = new MyThread();

        Thread t5 = new MyThread();

        //将线程放入池中进行执行

        pool.execute(t1);

        pool.execute(t2);

        pool.execute(t3);

        pool.execute(t4);

        pool.execute(t5);

        //关闭线程池

        pool.shutdown();

    }

}

 

输出结果

 

pool-1-thread-1正在执行。。。

pool-1-thread-1正在执行。。。

pool-1-thread-1正在执行。。。

pool-1-thread-1正在执行。。。

pool-1-thread-1正在执行。。。

 

2newFixedThreadPool

 

TestFixedThreadPool.Java

 

publicclass TestFixedThreadPool {

    publicstaticvoid main(String[] args) {

        //创建一个可重用固定线程数的线程池

        ExecutorService pool = Executors.newFixedThreadPool(2);

        //创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口

        Thread t1 = new MyThread();

        Thread t2 = new MyThread();

        Thread t3 = new MyThread();

        Thread t4 = new MyThread();

        Thread t5 = new MyThread();

        //将线程放入池中进行执行

        pool.execute(t1);

        pool.execute(t2);

        pool.execute(t3);

        pool.execute(t4);

        pool.execute(t5);

        //关闭线程池

        pool.shutdown();

    }

}

 

输出结果

 

pool-1-thread-1正在执行。。。

pool-1-thread-2正在执行。。。

pool-1-thread-1正在执行。。。

pool-1-thread-2正在执行。。。

pool-1-thread-1正在执行。。。

 

3 newCachedThreadPool

 

TestCachedThreadPool.java

 

publicclass TestCachedThreadPool {

    publicstaticvoid main(String[] args) {

        //创建一个可重用固定线程数的线程池

        ExecutorService pool = Executors.newCachedThreadPool();

        //创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口

        Thread t1 = new MyThread();

        Thread t2 = new MyThread();

        Thread t3 = new MyThread();

        Thread t4 = new MyThread();

        Thread t5 = new MyThread();

        //将线程放入池中进行执行

        pool.execute(t1);

        pool.execute(t2);

        pool.execute(t3);

        pool.execute(t4);

        pool.execute(t5);

        //关闭线程池

        pool.shutdown();

    }

}

 

输出结果:

 

pool-1-thread-2正在执行。。。

pool-1-thread-4正在执行。。。

pool-1-thread-3正在执行。。。

pool-1-thread-1正在执行。。。

pool-1-thread-5正在执行。。。

 

4newScheduledThreadPool

 

TestScheduledThreadPoolExecutor.java

 

publicclass TestScheduledThreadPoolExecutor {

    publicstaticvoid main(String[] args) {

        ScheduledThreadPoolExecutor exec = new ScheduledThreadPoolExecutor(1);

        exec.scheduleAtFixedRate(new Runnable() {//每隔一段时间就触发异常

                      @Override

                      publicvoid run() {

                           //throw new RuntimeException();

                           System.out.println("================");

                      }

                  }, 1000, 5000, TimeUnit.MILLISECONDS);

        exec.scheduleAtFixedRate(new Runnable() {//每隔一段时间打印系统时间,证明两者是互不影响的

                      @Override

                      publicvoid run() {

                           System.out.println(System.nanoTime());

                      }

                  }, 1000, 2000, TimeUnit.MILLISECONDS);

    }

}

 

输出结果

 

================

8384644549516

8386643829034

8388643830710

================

8390643851383

8392643879319

8400643939383

 

三:ThreadPoolExecutor详解

 

ThreadPoolExecutor的完整构造方法的签名是:ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) .

 

corePoolSize - 池中所保存的线程数,包括空闲线程。

 

maximumPoolSize-池中允许的最大线程数。

 

keepAliveTime - 当线程数大于核心时,此为终止前多余的空闲线程等待新任务的最长时间。

 

unit - keepAliveTime 参数的时间单位。

 

workQueue - 执行前用于保持任务的队列。此队列仅保持由 execute方法提交的 Runnable任务。

 

threadFactory - 执行程序创建新线程时使用的工厂。

 

handler - 由于超出线程范围和队列容量而使执行被阻塞时所使用的处理程序。

 

ThreadPoolExecutorExecutors类的底层实现。

 

JDK帮助文档中,有如此一段话:

 

强烈建议程序员使用较为方便的Executors工厂方法Executors.newCachedThreadPool()(无界线程池,可以进行自动线程回收)、Executors.newFixedThreadPool(int)(固定大小线程池)Executors.newSingleThreadExecutor()(单个后台线程)

 

它们均为大多数使用场景预定义了设置。

 

下面介绍一下几个类的源码:

 

ExecutorService  newFixedThreadPool (int nThreads):固定大小线程池。

 

可以看到,corePoolSizemaximumPoolSize的大小是一样的(实际上,后面会介绍,如果使用无界queue的话maximumPoolSize参数是没有意义的),keepAliveTimeunit的设值表名什么?-就是该实现不想keep alive!最后的BlockingQueue选择了LinkedBlockingQueuequeue有一个特点,他是无界的

 

1.     public static ExecutorService newFixedThreadPool(int nThreads) {   

2.             return new ThreadPoolExecutor(nThreads, nThreads,   

3.                                           0L, TimeUnit.MILLISECONDS,   

4.                                           new LinkedBlockingQueue<Runnable>());   

5.         }

 

ExecutorService  newSingleThreadExecutor():单线程

 

1.     public static ExecutorService newSingleThreadExecutor() {   

2.             return new FinalizableDelegatedExecutorService   

3.                 (new ThreadPoolExecutor(11,   

4.                                         0L, TimeUnit.MILLISECONDS,   

5.                                         new LinkedBlockingQueue<Runnable>()));   

6.         }

 

ExecutorService newCachedThreadPool():无界线程池,可以进行自动线程回收

 

这个实现就有意思了。首先是无界的线程池,所以我们可以发现maximumPoolSizebig big。其次BlockingQueue的选择上使用SynchronousQueue。可能对于该BlockingQueue有些陌生,简单说:该QUEUE中,每个插入操作必须等待另一个线程的对应移除操作。

 

1.     public static ExecutorService newCachedThreadPool() {   

2.             return new ThreadPoolExecutor(0, Integer.MAX_VALUE,   

3.                                           60L, TimeUnit.SECONDS,   

4.                                           new SynchronousQueue<Runnable>());   

  1.     }

 

先从BlockingQueue<Runnable> workQueue这个入参开始说起。在JDK中,其实已经说得很清楚了,一共有三种类型的queue

 

所有BlockingQueue 都可用于传输和保持提交的任务。可以使用此队列与池大小进行交互:

 

如果运行的线程少于 corePoolSize,则 Executor始终首选添加新的线程,而不进行排队。(如果当前运行的线程小于corePoolSize,则任务根本不会存放,添加到queue,而是直接抄家伙(thread开始运行

 

如果运行的线程等于或多于 corePoolSize,则 Executor始终首选将请求加入队列而不添加新的线程

 

如果无法将请求加入队列,则创建新的线程,除非创建此线程超出 maximumPoolSize,在这种情况下,任务将被拒绝。

 

queue上的三种类型。

 

 

 

排队有三种通用策略:

 

直接提交。工作队列的默认选项是 SynchronousQueue,它将任务直接提交给线程而不保持它们。在此,如果不存在可用于立即运行任务的线程,则试图把任务加入队列将失败,因此会构造一个新的线程。此策略可以避免在处理可能具有内部依赖性的请求集时出现锁。直接提交通常要求无界 maximumPoolSizes 以避免拒绝新提交的任务。当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。

 

无界队列。使用无界队列(例如,不具有预定义容量的 LinkedBlockingQueue)将导致在所有 corePoolSize 线程都忙时新任务在队列中等待。这样,创建的线程就不会超过 corePoolSize。(因此,maximumPoolSize的值也就无效了。)当每个任务完全独立于其他任务,即任务执行互不影响时,适合于使用无界队列;例如,在 Web页服务器中。这种排队可用于处理瞬态突发请求,当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。

 

有界队列。当使用有限的 maximumPoolSizes时,有界队列(如 ArrayBlockingQueue)有助于防止资源耗尽,但是可能较难调整和控制。队列大小和最大池大小可能需要相互折衷:使用大型队列和小型池可以最大限度地降低 CPU 使用率、操作系统资源和上下文切换开销,但是可能导致人工降低吞吐量。如果任务频繁阻塞(例如,如果它们是 I/O边界),则系统可能为超过您许可的更多线程安排时间。使用小型队列通常要求较大的池大小,CPU使用率较高,但是可能遇到不可接受的调度开销,这样也会降低吞吐量。  

 

BlockingQueue的选择。

 

例子一:使用直接提交策略,也即SynchronousQueue

 

首先SynchronousQueue是无界的,也就是说他存数任务的能力是没有限制的,但是由于该Queue本身的特性在某次添加元素后必须等待其他线程取走后才能继续添加。在这里不是核心线程便是新创建的线程,但是我们试想一样下,下面的场景。

 

我们使用一下参数构造ThreadPoolExecutor

 

1.     new ThreadPoolExecutor(   

 

2.                 2330, TimeUnit.SECONDS,    

 

3.                 new  SynchronousQueue<Runnable>(),    

 

4.                 new RecorderThreadFactory("CookieRecorderPool"),    

 

  1.             new ThreadPoolExecutor.CallerRunsPolicy());  

 

new ThreadPoolExecutor(

 

  2, 3, 30, TimeUnit.SECONDS,

 

  new SynchronousQueue<Runnable>(),

 

  new RecorderThreadFactory("CookieRecorderPool"),

 

  new ThreadPoolExecutor.CallerRunsPolicy());

 

 当核心线程已经有2个正在运行.

 

  1. 此时继续来了一个任务(A),根据前面介绍的如果运行的线程等于或多于 corePoolSize,则 Executor始终首选将请求加入队列而不添加新的线程”,所以A被添加到queue中。
  2. 又来了一个任务(B),且核心2个线程还没有忙完,OK,接下来首先尝试1中描述,但是由于使用的SynchronousQueue,所以一定无法加入进去。
  3. 此时便满足了上面提到的如果无法将请求加入队列,则创建新的线程,除非创建此线程超出maximumPoolSize,在这种情况下,任务将被拒绝。,所以必然会新建一个线程来运行这个任务。
  4. 暂时还可以,但是如果这三个任务都还没完成,连续来了两个任务,第一个添加入queue中,后一个呢?queue中无法插入,而线程数达到了maximumPoolSize,所以只好执行异常策略了。

 

所以在使用SynchronousQueue通常要求maximumPoolSize是无界的,这样就可以避免上述情况发生(如果希望限制就直接使用有界队列)。对于使用SynchronousQueue的作用jdk中写的很清楚:此策略可以避免在处理可能具有内部依赖性的请求集时出现锁

 

什么意思?如果你的任务A1A2有内部关联,A1需要先运行,那么先提交A1,再提交A2,当使用SynchronousQueue我们可以保证,A1必定先被执行,在A1么有被执行前,A2不可能添加入queue中。

 

例子二:使用无界队列策略,即LinkedBlockingQueue

 

这个就拿newFixedThreadPool来说,根据前文提到的规则:

 

如果运行的线程少于 corePoolSize,则 Executor 始终首选添加新的线程,而不进行排队。那么当任务继续增加,会发生什么呢?

 

如果运行的线程等于或多于 corePoolSize,则 Executor 始终首选将请求加入队列,而不添加新的线程。OK,此时任务变加入队列之中了,那什么时候才会添加新线程呢?

 

如果无法将请求加入队列,则创建新的线程,除非创建此线程超出 maximumPoolSize,在这种情况下,任务将被拒绝。这里就很有意思了,可能会出现无法加入队列吗?不像SynchronousQueue那样有其自身的特点,对于无界队列来说,总是可以加入的(资源耗尽,当然另当别论)。换句说,永远也不会触发产生新的线程!corePoolSize大小的线程数会一直运行,忙完当前的,就从队列中拿任务开始运行。所以要防止任务疯长,比如任务运行的实行比较长,而添加任务的速度远远超过处理任务的时间,而且还不断增加,不一会儿就爆了。

 

例子三:有界队列,使用ArrayBlockingQueue

 

这个是最为复杂的使用,所以JDK不推荐使用也有些道理。与上面的相比,最大的特点便是可以防止资源耗尽的情况发生。

 

举例来说,请看如下构造方法:

 

1.     new ThreadPoolExecutor(   

 

2.                 2430, TimeUnit.SECONDS,    

 

3.                 new ArrayBlockingQueue<Runnable>(2),    

 

4.                 new RecorderThreadFactory("CookieRecorderPool"),    

 

5.                 new ThreadPoolExecutor.CallerRunsPolicy());  

 

new ThreadPoolExecutor(

 

    2, 4, 30, TimeUnit.SECONDS,

 

    new ArrayBlockingQueue<Runnable>(2),

 

    new RecorderThreadFactory("CookieRecorderPool"),

 

    new ThreadPoolExecutor.CallerRunsPolicy());

 

假设,所有的任务都永远无法执行完。

 

对于首先来的A,B来说直接运行,接下来,如果来了C,D,他们会被放到queue中,如果接下来再来E,F,则增加线程运行EF。但是如果再来任务,队列无法再接受了,线程数也到达最大的限制了,所以就会使用拒绝策略来处理。

 

keepAliveTime

 

jdk中的解释是:当线程数大于核心时,此为终止前多余的空闲线程等待新任务的最长时间。

 

有点拗口,其实这个不难理解,在使用了的应用中,大多都有类似的参数需要配置。比如数据库连接池,DBCP中的maxIdleminIdle参数。

 

什么意思?接着上面的解释,后来向老板派来的工人始终是借来的,俗话说有借就有还,但这里的问题就是什么时候还了,如果借来的工人刚完成一个任务就还回去,后来发现任务还有,那岂不是又要去借?这一来一往,老板肯定头也大死了。

 

 

 

合理的策略:既然借了,那就多借一会儿。直到某一段时间后,发现再也用不到这些工人时,便可以还回去了。这里的某一段时间便是keepAliveTime的含义,TimeUnitkeepAliveTime值的度量。

 

 

 

RejectedExecutionHandler

 

另一种情况便是,即使向老板借了工人,但是任务还是继续过来,还是忙不过来,这时整个队伍只好拒绝接受了。

 

RejectedExecutionHandler接口提供了对于拒绝任务的处理的自定方法的机会。在ThreadPoolExecutor中已经默认包含了4中策略,因为源码非常简单,这里直接贴出来。

 

CallerRunsPolicy线程调用运行该任务的 execute 本身。此策略提供简单的反馈控制机制,能够减缓新任务的提交速度。

 

1.     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {   

 

2.                 if (!e.isShutdown()) {   

 

3.                     r.run();   

 

4.                 }   

 

5.             }  

 

public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {

 

           if (!e.isShutdown()) {

 

               r.run();

 

           }

 

       }

 

这个策略显然不想放弃执行任务。但是由于池中已经没有任何资源了,那么就直接使用调用该execute的线程本身来执行。

 

AbortPolicy处理程序遭到拒绝将抛出运行时RejectedExecutionException

 

1.     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {   

 

2.                 throw new RejectedExecutionException();   

 

3.             }  

 

public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {

 

           throw new RejectedExecutionException();

 

       }

 

 这种策略直接抛出异常,丢弃任务。

 

DiscardPolicy不能执行的任务将被删除

 

1.     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {   

 

2.             }  

 

public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {

 

       }

 

 这种策略和AbortPolicy几乎一样,也是丢弃任务,只不过他不抛出异常。

 

DiscardOldestPolicy如果执行程序尚未关闭,则位于工作队列头部的任务将被删除,然后重试执行程序(如果再次失败,则重复此过程)

 

1.     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {   

 

2.                 if (!e.isShutdown()) {   

 

3.                     e.getQueue().poll();   

 

4.                     e.execute(r);   

 

5.                 }   

 

  1.         }  

 

public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {

 

           if (!e.isShutdown()) {

 

               e.getQueue().poll();

 

               e.execute(r);

 

           }

 

       }

 

该策略就稍微复杂一些,在pool没有关闭的前提下首先丢掉缓存在队列中的最早的任务,然后重新尝试运行该任务。这个策略需要适当小心。

 

设想:如果其他线程都还在运行,那么新来任务踢掉旧任务,缓存在queue中,再来一个任务又会踢掉queue中最老任务。

 

总结:

 

keepAliveTimemaximumPoolSizeBlockingQueue的类型均有关系。如果BlockingQueue是无界的,那么永远不会触发maximumPoolSize,自然keepAliveTime也就没有了意义。

 

反之,如果核心数较小,有界BlockingQueue数值又较小,同时keepAliveTime又设的很小,如果任务频繁,那么系统就会频繁的申请回收线程。

 

 

 

public static ExecutorService newFixedThreadPool(int nThreads) {

 

       return new ThreadPoolExecutor(nThreads, nThreads,

 

                                     0L, TimeUnit.MILLISECONDS,

 

                                     new LinkedBlockingQueue<Runnable>());

 

   }


原文链接:http://blog.csdn.net/sd0902/article/details/8395677

分享到:
评论

相关推荐

    Java 并发编程实战

    - **线程池**:讲解ExecutorService、ThreadPoolExecutor、ScheduledExecutorService的使用和配置,以及线程池的优化策略。 5. **并发异常处理** - **线程中断**:讨论中断机制,如何优雅地停止线程。 - **死锁*...

    [电子书][java类]java并发编程实践

    7. **线程池**:讲解ExecutorService、ScheduledExecutorService等,它们是如何管理和调度线程的,以及如何优化线程池的配置以提高系统性能。 8. **并发设计模式**:如生产者消费者模型、读写锁策略、双端队列等,...

    Java高并发编程与JVM性能调优实战 视频教程 下载下载因为太大存百度云盘4.zip

    本视频教程详细讲解了以上内容,并通过实例演示和代码分析,使学习者能够将理论知识应用到实际项目中,提升Java并发编程和JVM性能调优的专业技能。配合提供的"Java高并发编程与JVM性能调优实战 视频教程 下载下载...

    scratch少儿编程逻辑思维游戏源码-超级马力欧兄弟.zip

    scratch少儿编程逻辑思维游戏源码-超级马力欧兄弟.zip

    scratch少儿编程逻辑思维游戏源码-城堡躲避.zip

    scratch少儿编程逻辑思维游戏源码-城堡躲避.zip

    气动力学驱动的导弹姿态控制技术及其MATLAB仿真研究

    内容概要:本文探讨了基于气动力学的导弹姿态控制技术,并详细介绍了其MATLAB仿真方法。文章首先阐述了气动力学的基本概念以及其在导弹设计中的重要性,随后讲解了导弹姿态控制系统的构成,包括传感器、控制器和执行器的功能。接下来,重点介绍了如何利用MATLAB进行导弹飞行过程和姿态控制的仿真,包括建立导弹模型、设定环境参数、编写仿真代码等步骤。最后,通过仿真展示了气动力学在提升导弹飞行稳定性、机动性和作战效能方面的重要作用,并对未来的研究方向进行了展望。 适合人群:航空航天工程领域的研究人员、导弹系统设计师、从事飞行器控制研究的专业人士。 使用场景及目标:适用于希望深入了解导弹姿态控制原理及其仿真的专业人士,旨在提高导弹飞行性能和作战能力。 其他说明:文中提供的MATLAB代码仅为简化的示例,实际应用时需考虑更多复杂的因素和算法。

    scratch少儿编程逻辑思维游戏源码-电镀盒子.zip

    scratch少儿编程逻辑思维游戏源码-电镀盒子.zip

    基于DSP28335与STM32F407的锁相环程序在电源逆变系统中的应用及其实现

    内容概要:本文详细介绍了DSP28335与STM32F407在电源逆变系统中的锁相环(PLL)程序应用。首先概述了锁相环的基本概念及其在逆变系统中的重要性,然后深入探讨了DSP28335锁相环程序的特点和功能,如正弦波锁定、频率和相位跟踪、全桥逆变等功能。接着阐述了具体的实现步骤,包括系统配置、PLL算法选择、滤波器设计、正弦波生成与输出,最后进行了性能分析,强调了该程序在提高系统性能、稳定性和效率方面的优势。 适合人群:从事电力电子、嵌入式系统开发的技术人员,特别是对锁相环和逆变系统感兴趣的工程师。 使用场景及目标:适用于需要深入了解锁相环在电源逆变系统中应用的研发人员,旨在帮助他们掌握PLL的工作原理、实现方法及其优化技巧,以提高逆变系统的性能和可靠性。 其他说明:文中提供的技术细节和实现方法有助于读者更好地理解和应用锁相环技术,特别是在高频、高精度的逆变场合。

    scratch少儿编程逻辑思维游戏源码-Shape Smasher.zip

    scratch少儿编程逻辑思维游戏源码-Shape Smasher.zip

    少儿编程scratch项目源代码文件案例素材-审美乌托邦.zip

    少儿编程scratch项目源代码文件案例素材-审美乌托邦.zip

    少儿编程scratch项目源代码文件案例素材-潜水艇.zip

    少儿编程scratch项目源代码文件案例素材-潜水艇.zip

    scratch少儿编程逻辑思维游戏源码-3D忍者.zip

    scratch少儿编程逻辑思维游戏源码-3D忍者.zip

    新能源领域基于EMD-ARMA的风光出力预测方法及其应用

    内容概要:本文介绍了基于EMD-ARMA的组合风光出力预测方法,详细阐述了经验模态分解(EMD)和自回归移动平均(ARMA)模型的应用步骤。首先,通过EMD将原始发电数据分解为多个本征模态函数(IMF),然后用ARMA模型对各IMF分量进行建模和预测,最后将预测结果叠加重构,获得最终的风光功率预测值。文中还提供了简化的Python代码示例,帮助读者理解和实现该方法。 适合人群:从事新能源研究和技术开发的专业人士,尤其是对风光发电预测感兴趣的科研人员和工程师。 使用场景及目标:适用于需要提高风光发电预测精度的项目,旨在通过先进的数学模型优化电力调度和资源配置。 其他说明:本文提供的代码示例仅用于教学目的,实际应用中需根据具体情况调整和完善。此外,建议在实践中参考更多专业文献和寻求专家意见以确保预测模型的准确性和可靠性。

    scratch少儿编程逻辑思维游戏源码-宝石消消乐.zip

    scratch少儿编程逻辑思维游戏源码-宝石消消乐.zip

    少儿编程scratch项目源代码文件案例素材-染色奔跑.zip

    少儿编程scratch项目源代码文件案例素材-染色奔跑.zip

    Comsol仿真超构表面光子晶体动量空间拓扑荷识别图绘制指南

    内容概要:本文详细介绍了使用Comsol仿真软件绘制超构表面光子晶体动量空间拓扑荷识别图的方法。首先简述了超构表面光子晶体的基本概念及其重要性,然后逐步讲解了如何在Comsol中建立模型、设置仿真参数并运行仿真,最终生成动量空间拓扑荷识别图。文中还附有简单代码示例,帮助读者更好地理解整个流程。最后对所学内容进行了总结,并展望了未来的研究方向。 适合人群:对光学、物理学以及仿真软件感兴趣的科研人员和技术爱好者。 使用场景及目标:适用于希望深入了解光子在超构表面光子晶体中传播特性的研究人员,旨在提高他们对该领域的认识水平,促进相关科学研究的发展。 阅读建议:由于涉及较多专业术语和复杂概念,在阅读时建议先掌握基本理论知识,并结合实际案例进行练习,以便更好地消化吸收文中内容。

    基于CNN-LSTM与SE注意力机制的时序数据分析及应用(MATLAB实现)

    内容概要:本文介绍了一种结合卷积神经网络(CNN)、长短时记忆网络(LSTM)以及SE注意力机制的混合模型用于时序数据分类预测的方法,并提供了具体的MATLAB实现方法。文中详细解释了模型的工作流程,从卷积层的空间特征提取开始,经过SE注意力模块对特征进行加权处理,再到LSTM层的时间序列建模,最终完成分类任务。此外,还讨论了一些优化技巧,如数据预处理、动态学习率设置、特征压缩等,以提高模型性能。 适合人群:有一定机器学习基础的研究人员和技术开发者,特别是那些从事医疗健康、工业监控等领域时序数据分析工作的专业人士。 使用场景及目标:适用于需要高效处理复杂时序数据的应用场合,如医疗诊断、工业设备状态监测等。主要目的是为了改善传统单一模型在特征利用方面的局限性,提供一种更加精准有效的解决方案。 其他说明:文中提供的代码片段可以直接应用于实际项目中,只需根据具体情况调整参数配置和数据格式。同时提醒使用者关注数据预处理步骤,确保输入数据的质量和一致性对于获得良好结果至关重要。

    scratch少儿编程逻辑思维游戏源码-超级摇摆小猫.zip

    scratch少儿编程逻辑思维游戏源码-超级摇摆小猫.zip

    scratch少儿编程逻辑思维游戏源码-奔跑吧!糖豆人.zip

    scratch少儿编程逻辑思维游戏源码-奔跑吧!糖豆人.zip

    基于Python实现的旋翼无人机(UAV)六自由度动力学模型及其应用

    内容概要:本文档详细介绍了旋翼无人机(UAV)的动力学建模方法,重点在于六自由度模型的构建。首先定义了一个简化的四旋翼无人机动力学类,涵盖了质量、惯性矩阵、重力加速度等基本物理参数,并实现了推力矩阵的计算,用于将电机转速转化为推力和力矩。接着讨论了姿态更新过程中四元数的作用,提供了四元数更新的具体实现方式,强调了归一化操作的重要性。此外,还探讨了传感器噪声对飞行控制系统的影响,提出了一个较为真实的陀螺仪噪声模型,考虑到了随机游走特性和低通滤波效果。最后给出了一个简易的数值积分循环示例,展示了如何利用上述模型进行仿真。 适用人群:从事无人机研究、开发的技术人员,尤其是对飞行器动力学建模感兴趣的工程师。 使用场景及目标:适用于希望深入了解无人机内部工作原理的研究者和技术开发者,旨在帮助他们掌握从理论到实践的关键步骤,包括但不限于动力学建模、姿态控制、传感器误差补偿等方面的知识。 其他说明:文中提供的代码片段均为简化版本,实际应用中可根据具体需求调整参数设置和算法细节。同时推荐使用专业数学库来提高代码效率和准确性。

Global site tag (gtag.js) - Google Analytics