`
543089122
  • 浏览: 153778 次
  • 性别: Icon_minigender_1
  • 来自: 武汉
社区版块
存档分类
最新评论

BloomFilter(布隆过滤器)

阅读更多
package sunfa;

import java.util.BitSet;
import java.util.Random;

/**
 * BloomFilter(布隆过滤器)
 * http://www.cnblogs.com/allensun/archive/2011/02/16/1956532.html
 * 
 */
public class BloomFilter {
	private int DEFAULT_SIZE = 1 << 6;
	private BitSet bitSet = null;// java.util.BitSet的最小长度是1<<6

	public BloomFilter() {
		init();
	}

	public BloomFilter(int cmp) {
		this.DEFAULT_SIZE = cmp;
		init();
	}

	private void init() {
		bitSet = new BitSet(DEFAULT_SIZE);
	}

	public int size() {
		return bitSet.size();
	}

	private static int oldHash(int h) {
		h += ~(h << 9);
		h ^= (h >>> 14);
		h += (h << 4);
		h ^= (h >>> 10);
		return h;
	}

	static int indexFor(int h, int length) {
		return h & (length - 1);
	}

	public void add(Object o) {
		int i = indexFor(oldHash(o.hashCode()), DEFAULT_SIZE);
		bitSet.set(i);
	}

	public boolean contians(Object o) {
		int i = indexFor(oldHash(o.hashCode()), DEFAULT_SIZE);
		return bitSet.get(i);
	}

	public String toString() {
		String s = "[";
		for (int i = 0; i < bitSet.size(); i++) {
			if (bitSet.get(i))
				s += i + ",";
		}
		s += "]";
		return s;
	}

	public static void main(String[] args) {
		BloomFilter bloom = new BloomFilter();
		System.out.println("bloomFilter.size:" + bloom.size());
		Random ran = new Random();
		int count = 100;
		for (int i = 0; i < count; i++) {
			int n =  ran.nextInt(100);
			System.out.print("before:" + n + "," + bloom.contians(n));
			bloom.add(n);
			System.out.println("==>after:" + n + "," + bloom.contians(n));
		}
		System.out.println();
		System.out.println(bloom.toString());
	}

//幂算法
	public static int power(int b, int e) {
		if (b == 0 || b == 1 || e == 0) {
			return 1;
		}
		if (1 == e)
			return b;
		int n = e >> 1;
		int tmp = power(b, n);
		if (0 == (e & 1))
			return tmp * tmp;
		else
			return tmp * tmp * b;
	}
}

分享到:
评论

相关推荐

    bloom filter布隆过滤器学习资料大全

    这个压缩包文件“bloom filter布隆过滤器学习资料大全”显然是一个关于布隆过滤器的资源集合,包含了相关的论文和变种总结,对于学习和理解这一技术非常有帮助。 布隆过滤器的核心思想是通过多个哈希函数将元素映射...

    【技术分享】Bloomfilter布隆过滤器.pptx

    布隆过滤器是一种高效的空间节省的数据结构,用于判断一个元素是否可能在一个集合中,但可能会产生一定的误判率。它由一个很长的二进制向量和多个独立的哈希函数组成。布隆过滤器的基本原理是,当一个元素被添加到...

    bloom filter(C#版自制布隆过滤器)

    布隆过滤器是一种空间效率极高的概率型数据结构,用于判断一个元素是否可能在一个集合中。它是由 Burton Howard Bloom 在1970年提出的,主要应用于大数据存储和检索,尤其在数据库、缓存系统和网络搜索等领域有广泛...

    硬核 - Redis 布隆(Bloom Filter)过滤器原理与实战.doc

    Redis集成布隆过滤器需要使用Redis 4.0以上版本,或者使用Redis 6.x版本,使用官方提供的插件机制或编译安装RedisBloom模块。使用布隆过滤器可以解决大量数据去重问题,提高系统性能和效率。 布隆过滤器的优点是: ...

    布隆过滤器C源码-bloomfilter.rar

    例如,`bf_create(size_t capacity, uint8_t num_hashes)`用于创建一个布隆过滤器,`bf_insert(bloom_filter* filter, const void* item)`用于插入元素,`bf_query(bloom_filter* filter, const void* item)`用于...

    Go-一个简单的golang布隆过滤器

    - `Intersection(other *BloomFilter)`: 计算两个布隆过滤器的交集,创建一个新的布隆过滤器,只保留同时存在于两个过滤器中的元素的位。 4. **优化策略**: - **位数组大小**:位数组的大小直接影响误判率,需要...

    布隆过滤器BloomFilters的一个简单Java库

    布隆过滤器(Bloom Filter)是一种空间效率极高的概率型数据结构,用于判断一个元素是否可能在一个集合中。在Java开发中,特别是在处理大数据、内存限制或需要快速查询是否存在某个元素的场景下,布隆过滤器是一个...

    java实现的布隆过滤器算法

    布隆过滤器(Bloom Filter)是一种空间效率极高的概率型数据结构,用于判断一个元素是否在一个集合中。它可能会误判,但不会漏判,即如果它说一个元素在集合中,那可能是错误的,但如果它说一个元素不在集合中,那么...

    布隆过滤器-BloomFilter

    布隆过滤器(Bloom Filter)是一种空间效率极高的概率型数据结构,用于判断一个元素是否可能在一个集合中。由布隆在1970年提出,它不像传统的数据结构如哈希表那样保证不误判,而是允许有一定的错误率。这种特性使得...

    Go-布隆过滤器的一个Go实现参考bloomfilter.js

    `bloomfilter.js`可能是JavaScript版本的布隆过滤器实现,而"Go-布隆过滤器的一个Go实现参考bloomfilter.js"则表明该Go版本的实现是借鉴了JavaScript版本的设计思路或代码结构。 Go实现布隆过滤器的关键组件包括: ...

    介绍Bloom Filter(布隆过滤器)原理、实现及具体应用

    布隆过滤器(Bloom Filter)是一种空间效率极高的概率型数据结构,用于判断一个元素是否可能在一个集合中。它可能会误判,但不会漏判,即可能存在假阳性(False Positive),但绝不会有假阴性(False Negative)。...

    Java版本的BloomFilter (布隆过滤器)

    **布隆过滤器(Bloom Filter)**是一种空间效率极高的概率型数据结构,用于测试一个元素是否在一个集合中。由Burton Howard Bloom在1970年提出,主要用于节省存储空间,尤其在大数据场景下,它能有效地解决大规模...

    布隆过滤器(利用布隆过滤器实现文字的嵌入和查找功能)

    布隆过滤器,大家学过数据结构的应该都清楚,一般的字典树要实现嵌入和查找都内存的消耗非常大,布隆过滤器有BloomFilter,string, BKDRHash, APHash, DJBHash&gt; bf五个参数你要查找的元素个数,查找元素类型,三个...

    Bloom_filter_(C).zip_bloom_bloom filter_c++布隆_布隆过滤器

    布隆过滤器(Bloom Filter)是一种空间效率极高的概率型数据结构,用于判断一个元素是否可能在一个集合中。在C++中实现布隆过滤器,可以有效地处理大量数据,尤其是在内存有限的情况下。这个压缩包文件"Bloom_filter...

    布隆过滤器python库

    在Python中,有多个库实现了布隆过滤器,其中一个就是我们这里提到的"python-bloomfilter-master"。 这个Python库提供了对布隆过滤器的简单接口,使得开发者可以方便地在项目中应用布隆过滤器。安装过程非常直观,...

    布隆过滤器之C++实现

    C++实现的布隆过滤器,其中使用到的bitset也是自己简单实现的一个BitContainer。可以处理千万条到亿条记录的存在性判断。做成dll可以在很多场合使用,如自己写爬虫,要判断一个url是否已经访问过,判断一个单词是否...

    bloomfilter简介

    bloomfilter布隆过滤器 海量数据处理

    Ruby 中的 BloomFilter原生计数过滤器 + Redis 计数,非计数过滤器.zip

    Ruby 中的 BloomFilter原生计数过滤器 + Redis 计数/非计数过滤器Ruby 中的 BloomFilter原生(MRI/C)计数布隆过滤器Redis 支持的 getbit/setbit 非计数布隆过滤器Redis 支持的基于集合的计数 (+TTL) 布隆过滤器布隆...

    布隆过滤器-详说布隆过滤器.pdf

    在Java中,布隆过滤器的实现非常便捷,尤其是利用了Guava库提供的BloomFilter类。开发者可以非常简单地通过调用put方法添加元素,通过mayContain方法来检查元素是否存在。不仅如此,布隆过滤器还允许开发者自定义...

    布隆过滤器的实现,以及测试用例,简单易懂并做了一些注释

    布隆过滤器是一种概率型数据结构,用于判断一个元素是否可能在一个集合中。它是由Burton Howard Bloom在1970年提出的,主要用于解决大数据集的存储和查询问题,尤其在空间效率上有着显著优势。在数据库、搜索引擎、...

Global site tag (gtag.js) - Google Analytics