`

Python Format String Specification

阅读更多

Since it is very common that you will deal with the string format, so I guess it is good to have some references of somehow that you can quickly look up. It desire a page of its own.

 

Basically there are two types of formatting string that you may use.

 

The first one is the Old String Format. It uses the % operator. here is one example of the old format string.

 

 

You can find more details in this page: "Old String Formatting"

 

>>> import math
>>> print 'The value of PI is approximately %5.3f.' % math.pi
The value of PI is approximately 3.142.

 

 

However, now it is recommended that you use str.format method. And below is excerpt from the original document on String Formatting Operations section.

 

 

7.1.3. Format String Syntax

The str.format() method and the Formatter class share the same syntax for format strings (although in the case of Formatter, subclasses can define their own format string syntax).

Format strings contain “replacement fields” surrounded by curly braces {}. Anything that is not contained in braces is considered literal text, which is copied unchanged to the output. If you need to include a brace character in the literal text, it can be escaped by doubling: {{ and }}.

The grammar for a replacement field is as follows:

replacement_field ::=  "{" [field_name] ["!" conversion] [":" format_spec] "}"
field_name        ::=  arg_name ("." attribute_name | "[" element_index "]")*
arg_name          ::=  [identifier | integer]
attribute_name    ::=  identifier
element_index     ::=  integer | index_string
index_string      ::=  <any source character except "]"> +
conversion        ::=  "r" | "s"
format_spec       ::=  <described in the next section>

In less formal terms, the replacement field can start with a field_name that specifies the object whose value is to be formatted and inserted into the output instead of the replacement field. The field_name is optionally followed by a conversion field, which is preceded by an exclamation point '!', and a format_spec, which is preceded by a colon ':'. These specify a non-default format for the replacement value.

See also the Format Specification Mini-Language section.

The field_name itself begins with an arg_name that is either a number or a keyword. If it’s a number, it refers to a positional argument, and if it’s a keyword, it refers to a named keyword argument. If the numerical arg_names in a format string are 0, 1, 2, ... in sequence, they can all be omitted (not just some) and the numbers 0, 1, 2, ... will be automatically inserted in that order. Becausearg_name is not quote-delimited, it is not possible to specify arbitrary dictionary keys (e.g., the strings '10' or ':-]') within a format string. The arg_name can be followed by any number of index or attribute expressions. An expression of the form '.name' selects the named attribute using getattr(), while an expression of the form '[index]' does an index lookup using __getitem__().

Changed in version 2.7: The positional argument specifiers can be omitted, so '{} {}' is equivalent to '{0} {1}'.

Some simple format string examples:

"First, thou shalt count to {0}" # References first positional argument
"Bring me a {}"                  # Implicitly references the first positional argument
"From {} to {}"                  # Same as "From {0} to {1}"
"My quest is {name}"             # References keyword argument 'name'
"Weight in tons {0.weight}"      # 'weight' attribute of first positional arg
"Units destroyed: {players[0]}"  # First element of keyword argument 'players'.

The conversion field causes a type coercion before formatting. Normally, the job of formatting a value is done by the __format__()method of the value itself. However, in some cases it is desirable to force a type to be formatted as a string, overriding its own definition of formatting. By converting the value to a string before calling __format__(), the normal formatting logic is bypassed.

Two conversion flags are currently supported: '!s' which calls str() on the value, and '!r' which calls repr().

Some examples:

"Harold's a clever {0!s}"        # Calls str() on the argument first
"Bring out the holy {name!r}"    # Calls repr() on the argument first

The format_spec field contains a specification of how the value should be presented, including such details as field width, alignment, padding, decimal precision and so on. Each value type can define its own “formatting mini-language” or interpretation of the format_spec.

Most built-in types support a common formatting mini-language, which is described in the next section.

format_spec field can also include nested replacement fields within it. These nested replacement fields can contain only a field name; conversion flags and format specifications are not allowed. The replacement fields within the format_spec are substituted before the format_spec string is interpreted. This allows the formatting of a value to be dynamically specified.

See the Format examples section for some examples.

7.1.3.1. Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how individual values are presented (see Format String Syntax). They can also be passed directly to the built-in format() function. Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting options are only supported by the numeric types.

A general convention is that an empty format string ("") produces the same result as if you had called str() on the value. A non-empty format string typically modifies the result.

The general form of a standard format specifier is:

format_spec ::=  [[fill]align][sign][#][0][width][,][.precision][type]
fill        ::=  <a character other than '{' or '}'>
align       ::=  "<" | ">" | "=" | "^"
sign        ::=  "+" | "-" | " "
width       ::=  integer
precision   ::=  integer
type        ::=  "b" | "c" | "d" | "e" | "E" | "f" | "F" | "g" | "G" | "n" | "o" | "s" | "x" | "X" | "%"

The fill character can be any character other than ‘{‘ or ‘}’. The presence of a fill character is signaled by the character following it, which must be one of the alignment options. If the second character of format_spec is not a valid alignment option, then it is assumed that both the fill character and the alignment option are absent.

The meaning of the various alignment options is as follows:

Option Meaning
'<' Forces the field to be left-aligned within the available space (this is the default for most objects).
'>' Forces the field to be right-aligned within the available space (this is the default for numbers).
'=' Forces the padding to be placed after the sign (if any) but before the digits. This is used for printing fields in the form ‘+000000120’. This alignment option is only valid for numeric types.
'^' Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill it, so that the alignment option has no meaning in this case.

The sign option is only valid for number types, and can be one of the following:

Option Meaning
'+' indicates that a sign should be used for both positive as well as negative numbers.
'-' indicates that a sign should be used only for negative numbers (this is the default behavior).
space indicates that a leading space should be used on positive numbers, and a minus sign on negative numbers.

The '#' option is only valid for integers, and only for binary, octal, or hexadecimal output. If present, it specifies that the output will be prefixed by '0b''0o', or '0x', respectively.

The ',' option signals the use of a comma for a thousands separator. For a locale aware separator, use the 'n' integer presentation type instead.

Changed in version 2.7: Added the ',' option (see also PEP 378).

width is a decimal integer defining the minimum field width. If not specified, then the field width will be determined by the content.

If the width field is preceded by a zero ('0') character, this enables zero-padding. This is equivalent to an alignment type of '=' and a fill character of '0'.

The precision is a decimal number indicating how many digits should be displayed after the decimal point for a floating point value formatted with 'f' and 'F', or before and after the decimal point for a floating point value formatted with 'g' or 'G'. For non-number types the field indicates the maximum field size - in other words, how many characters will be used from the field content. Theprecision is not allowed for integer values.

Finally, the type determines how the data should be presented.

The available string presentation types are:

Type Meaning
's' String format. This is the default type for strings and may be omitted.
None The same as 's'.

The available integer presentation types are:

Type Meaning
'b' Binary format. Outputs the number in base 2.
'c' Character. Converts the integer to the corresponding unicode character before printing.
'd' Decimal Integer. Outputs the number in base 10.
'o' Octal format. Outputs the number in base 8.
'x' Hex format. Outputs the number in base 16, using lower- case letters for the digits above 9.
'X' Hex format. Outputs the number in base 16, using upper- case letters for the digits above 9.
'n' Number. This is the same as 'd', except that it uses the current locale setting to insert the appropriate number separator characters.
None The same as 'd'.

In addition to the above presentation types, integers can be formatted with the floating point presentation types listed below (except'n' and None). When doing so, float() is used to convert the integer to a floating point number before formatting.

The available presentation types for floating point and decimal values are:

Type Meaning
'e' Exponent notation. Prints the number in scientific notation using the letter ‘e’ to indicate the exponent.
'E' Exponent notation. Same as 'e' except it uses an upper case ‘E’ as the separator character.
'f' Fixed point. Displays the number as a fixed-point number.
'F' Fixed point. Same as 'f'.
'g'

General format. For a given precision p >= 1, this rounds the number to p significant digits and then formats the result in either fixed-point format or in scientific notation, depending on its magnitude.

The precise rules are as follows: suppose that the result formatted with presentation type 'e' and precision p-1 would have exponent exp. Then if -4 <= exp < p, the number is formatted with presentation type 'f' and precision p-1-exp. Otherwise, the number is formatted with presentation type'e' and precision p-1. In both cases insignificant trailing zeros are removed from the significand, and the decimal point is also removed if there are no remaining digits following it.

Positive and negative infinity, positive and negative zero, and nans, are formatted as inf-inf0-0and nan respectively, regardless of the precision.

A precision of 0 is treated as equivalent to a precision of 1.

'G' General format. Same as 'g' except switches to 'E' if the number gets too large. The representations of infinity and NaN are uppercased, too.
'n' Number. This is the same as 'g', except that it uses the current locale setting to insert the appropriate number separator characters.
'%' Percentage. Multiplies the number by 100 and displays in fixed ('f') format, followed by a percent sign.
None The same as 'g'.

7.1.3.2. Format examples

This section contains examples of the new format syntax and comparison with the old %-formatting.

In most of the cases the syntax is similar to the old %-formatting, with the addition of the {} and with : used instead of %. For example, '%03.2f' can be translated to '{:03.2f}'.

The new format syntax also supports new and different options, shown in the follow examples.

Accessing arguments by position:

>>>
>>> '{0}, {1}, {2}'.format('a', 'b', 'c')
'a, b, c'
>>> '{}, {}, {}'.format('a', 'b', 'c')  # 2.7+ only
'a, b, c'
>>> '{2}, {1}, {0}'.format('a', 'b', 'c')
'c, b, a'
>>> '{2}, {1}, {0}'.format(*'abc')      # unpacking argument sequence
'c, b, a'
>>> '{0}{1}{0}'.format('abra', 'cad')   # arguments' indices can be repeated
'abracadabra'

Accessing arguments by name:

>>>
>>> 'Coordinates: {latitude}, {longitude}'.format(latitude='37.24N', longitude='-115.81W')
'Coordinates: 37.24N, -115.81W'
>>> coord = {'latitude': '37.24N', 'longitude': '-115.81W'}
>>> 'Coordinates: {latitude}, {longitude}'.format(**coord)
'Coordinates: 37.24N, -115.81W'

Accessing arguments’ attributes:

>>>
>>> c = 3-5j
>>> ('The complex number {0} is formed from the real part {0.real} '
...  'and the imaginary part {0.imag}.').format(c)
'The complex number (3-5j) is formed from the real part 3.0 and the imaginary part -5.0.'
>>> class Point(object):
...     def __init__(self, x, y):
...         self.x, self.y = x, y
...     def __str__(self):
...         return 'Point({self.x}, {self.y})'.format(self=self)
...
>>> str(Point(4, 2))
'Point(4, 2)'

Accessing arguments’ items:

>>>
>>> coord = (3, 5)
>>> 'X: {0[0]};  Y: {0[1]}'.format(coord)
'X: 3;  Y: 5'

Replacing %s and %r:

>>>
>>> "repr() shows quotes: {!r}; str() doesn't: {!s}".format('test1', 'test2')
"repr() shows quotes: 'test1'; str() doesn't: test2"

Aligning the text and specifying a width:

>>>
>>> '{:<30}'.format('left aligned')
'left aligned                  '
>>> '{:>30}'.format('right aligned')
'                 right aligned'
>>> '{:^30}'.format('centered')
'           centered           '
>>> '{:*^30}'.format('centered')  # use '*' as a fill char
'***********centered***********'

Replacing %+f%-f, and % f and specifying a sign:

>>>
>>> '{:+f}; {:+f}'.format(3.14, -3.14)  # show it always
'+3.140000; -3.140000'
>>> '{: f}; {: f}'.format(3.14, -3.14)  # show a space for positive numbers
' 3.140000; -3.140000'
>>> '{:-f}; {:-f}'.format(3.14, -3.14)  # show only the minus -- same as '{:f}; {:f}'
'3.140000; -3.140000'

Replacing %x and %o and converting the value to different bases:

>>>
>>> # format also supports binary numbers
>>> "int: {0:d};  hex: {0:x};  oct: {0:o};  bin: {0:b}".format(42)
'int: 42;  hex: 2a;  oct: 52;  bin: 101010'
>>> # with 0x, 0o, or 0b as prefix:
>>> "int: {0:d};  hex: {0:#x};  oct: {0:#o};  bin: {0:#b}".format(42)
'int: 42;  hex: 0x2a;  oct: 0o52;  bin: 0b101010'

Using the comma as a thousands separator:

>>>
>>> '{:,}'.format(1234567890)
'1,234,567,890'

Expressing a percentage:

>>>
>>> points = 19.5
>>> total = 22
>>> 'Correct answers: {:.2%}'.format(points/total)
'Correct answers: 88.64%'

Using type-specific formatting:

>>>
>>> import datetime
>>> d = datetime.datetime(2010, 7, 4, 12, 15, 58)
>>> '{:%Y-%m-%d %H:%M:%S}'.format(d)
'2010-07-04 12:15:58'

Nesting arguments and more complex examples:

>>>
>>> for align, text in zip('<^>', ['left', 'center', 'right']):
...     '{0:{fill}{align}16}'.format(text, fill=align, align=align)
...
'left<<<<<<<<<<<<'
'^^^^^center^^^^^'
'>>>>>>>>>>>right'
>>>
>>> octets = [192, 168, 0, 1]
>>> '{:02X}{:02X}{:02X}{:02X}'.format(*octets)
'C0A80001'
>>> int(_, 16)
3232235521
>>>
>>> width = 5
>>> for num in range(5,12):
...     for base in 'dXob':
...         print '{0:{width}{base}}'.format(num, base=base, width=width),
...     print
...
    5     5     5   101
    6     6     6   110
    7     7     7   111
    8     8    10  1000
    9     9    11  1001
   10     A    12  1010
   11     B    13  1011

 

 

分享到:
评论

相关推荐

    Python string.html

    Python string类型,字符串转化成整数,转化成浮点数,了解常见的转义字符,什么是切片?如何使用切片截取字符串,做好小练习

    Algorithm-python-string-similarity.zip

    这个名为"Algorithm-python-string-similarity.zip"的压缩包包含了一个Python库,用于计算不同字符串之间的相似度和距离。在这个库中,我们可以找到多种经典的字符串相似性算法的实现。 首先,我们要理解什么是字符...

    Python库 | python-string-utils-0.4.0.tar.gz

    Python字符串处理库`python-string-utils`是Python开发者在处理文本数据时的一个强大工具。这个库在版本0.4.0中提供了多种实用的功能,旨在简化和优化字符串操作,提高代码的效率和可读性。在Python中,字符串是常用...

    python格式化输出:fstring格式化输出.docx

    从早期的`%s`格式化到`str.format()`方法,再到Python 3.6中引入的f-string(格式化字符串字面量),Python中的字符串格式化技术一直在进化,变得更加直观且高效。 #### 1. f-string简介 f-string是一种在Python ...

    Python库 | format-blocks-0.1.2.tar.gz

    例如,传统的`%`操作符,`str.format()`方法,以及现代的f-string(formatted string literals)。如果`format-blocks`库是关于字符串格式化的,那么它可能提供了更高级的功能,如自定义格式规则、代码高亮、缩进...

    整理Python 常用string函数(收藏)

    字符串中字符大小写的变换 1. str.lower() //小写 &gt;&gt;&gt; ‘SkatE’.lower() ‘skate’ 2. str.upper() //大写 &gt;&gt;&gt; ‘SkatE’.upper() ‘SKATE’ 3. str.swapcase() //大小写互换 &gt;&gt;&gt; ‘SkatE’.swapcase() ...

    python format 格式化输出方法

    在python2.7及以上的版本,str.format()的方式为格式化提供了非常大的便利。与之前的%型格式化字符串相比,他显得更为方便与优越。下面我们就来看看format的具体用法。 1、常见的用法 二话不说,首先上代码,看看...

    python-string-utils:方便的Python库,用于验证,操作和生成字符串

    该库基本上包含在python包string_utils ,其中包含以下模块: validation.py (包含字符串检查API) manipulation.py (包含字符串转换api) generation.py (包含字符串生成api) errors.py (包含特定于库的...

    Python之string模块(详细讲述string常见的所有方法).docx

    在Python编程语言中,`string`模块提供了许多与字符串处理相关的功能。在本文中,我们将深入探讨`string`模块的一些常见方法,特别是涉及到大小写转换、判断函数以及其他字符串操作。 首先,我们来看大小写转换的...

    python实现字典(dict)和字符串(string)的相互转换方法

    本文实例讲述了python实现string和dict的相互转换方法。分享给大家供大家参考,具体如下: 字典(dict)转为字符串(string) 我们可以比较容易的将字典(dict)类型转为字符串(string)类型。 通过遍历dict中的所有元素就...

    Python中 string类的常用方法

    string类的常用方法

    python-format-js:字符串格式化,如 Python 的 .format()

    字符串格式化,如 Python 的 .format() Obs:预期结果与Python相同 安装 节点 安装: $ npm install python-format-js 要么 $ yarn add python-format-js 要求: const format = require ( "python-format-js...

    python-string-similarity:使用Python实现不同的字符串相似度和距离度量的库

    python字符串相似度 tdebatty likeity的Python3.x实现 一个实现不同字符串相似度和距离度量的库。 当前实现了十二种算法(包括Levenshtein编辑距离和同级,Jaro-Winkler,最长公共子序列,余弦相似性等)。 查看...

    Python string 操作举例,列举python操作字符传的基本操作

    然而,如果希望`\`本身被当作普通字符输出,可以使用`r`前缀创建原始字符串(raw string): ```python d = r"gao zhen ni hao \ ni hao ma" ``` 在`d`中,`\`将被视为普通字符,不会引起转义。 ### 字符串连接与...

    google python format

    标题和描述中提到的知识点涉及的是“Google Python Format”,但具体内容中不仅提及了Google Python格式规范,还涉及了代码的格式化、静态代码分析工具Pylint的使用以及如何提升Python代码的专业性。 在Python开发...

    Python将string转换到float的实例方法

    Python 如何转换string到float?简单几步,让你轻松解决。 打开软件,新建python项目,如图所示 右键菜单中创建.py文件,如图所示 步骤中文件输入代码如下: def string_to_float(str): return float(str) if __...

    python中string模块各属性以及函数的用法介绍

    ### Python中的String模块及其属性与函数的用法详解 在Python编程中,处理字符串是非常常见的需求之一。Python提供了丰富的内置函数来支持字符串的各种操作,包括大小写转换、格式化输出、搜索定位等。此外,Python...

    在Python中string类处理字符串常用的方法

    string类的常用方法

    前端项目-string-format.zip

    这个名为“前端项目-string-format.zip”的压缩包文件提供了一个增强JavaScript字符串处理能力的解决方案,它借鉴了Python语言中的`str.format()`方法。让我们详细探讨一下这个项目的核心概念、实现方式以及其在实际...

    python中string模块属性以函数应用-供大家学习研究参考

    def format_field(self, value, format_spec): return format(value, format_spec) def convert_field(self, value, conversion): # do any conversion on the resulting object if ...

Global site tag (gtag.js) - Google Analytics