The main goal of today's lecture is to prove the following theorem.
Theorem 1.1 A number
is a sum of two squares if and only if all prime factors of
of the form
have even exponent in the prime factorization of
.
Before tackling a proof, we consider a few examples.
Example 1.2
-
<!-- MATH
$5 = 1^2 + 2^2$
-->.
-
is not a sum of two squares.
-
is divisible by because is, but not by since is not, so is not a sum of two squares.
-
<!-- MATH
$2\cdot 3^4\cdot 5\cdot 7^2\cdot 13$
--> is a sum of two squares.
-
is a sum of two squares, since <!-- MATH
$389\equiv 1\pmod{4}$
--> and is prime.
-
<!-- MATH
$21=3\cdot 7$
--> is not a sum of two squares even though <!-- MATH
$21\equiv 1\pmod{4}$
-->.
In preparation for the proof of Theorem1.1, we recall a result that emerged when we analyzed how partial convergents of a continued fraction converge.
Lemma 1.3 If <!-- MATH
$x\in\mathbb{R}$
-->
and <!-- MATH
$n\in\mathbb{N}$
-->
, then there is a fraction <!-- MATH
$\displaystyle \frac{a}{b}$
-->
in lowest terms such that
and <!-- MATH
\begin{displaymath}
\left| x - \frac{a}{b} \right| \leq \frac{1}{b(n+1)}.
\end{displaymath}
-->
Proof. Let <!-- MATH
$[a_0,a_1,\ldots]$
-->
be the continued fraction expansion of
. As we saw in the proof of Theorem2.3 in Lecture18, for each
<!-- MATH
\begin{displaymath}
\left| x - \frac{p_m}{q_m}\right|
< \frac{1}{q_m \cdot q_{m+1}}.
\end{displaymath}
-->
Since
is always at least
bigger than
and
, either there exists an
such that <!-- MATH
$q_m\leq n < q_{m+1}$
-->
, or the continued fraction expansion of
is finite and
is larger than the denominator of the rational number
. In the first case, <!-- MATH
\begin{displaymath}
\left| x - \frac{p_m}{q_m}\right|
< \frac{1}{q_m \cdot q_{m+1}}
\leq \frac{1}{q_m \cdot (n+1)},
\end{displaymath}
-->
so <!-- MATH
$\displaystyle \frac{a}{b} = \frac{p_m}{q_m}$
-->
satisfies the conclusion of the lemma. In the second case, just let <!-- MATH
$\displaystyle \frac{a}{b} = x$
-->
.
Definition 1.4 A representation <!-- MATH
$n=x^2 + y^2$
-->
is
primitive if <!-- MATH
$\gcd(x,y)=1$
-->
.
Lemma 1.5 If
is divisible by a prime
of the form
, then
has no primitive representations.
Proof. If
has a primitive representation, <!-- MATH
$n=x^2 + y^2$
-->
, then <!-- MATH
\begin{displaymath}
p \mid x^2 + y^2\quad \text{ and }\quad \gcd(x,y)=1,
\end{displaymath}
-->
and
so
and
. Thus <!-- MATH
$x^2 + y^2 \equiv 0\pmod{p}$
-->
so, since <!-- MATH
$\mathbb{Z}/p\mathbb{Z}$
-->
is a field we can divide by
and see that <!-- MATH
\begin{displaymath}
(x/y)^2 \equiv -1\pmod{p}.
\end{displaymath}
-->
Thus the quadratic residue symbol <!-- MATH
$\left(\frac{-1}{p}\right)$
-->
equals
. However, <!-- MATH
\begin{displaymath}
\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = (-1)^\frac{4m+3-1}{2} = (-1)^{2m+1} = -1.
\end{displaymath}
-->
Proof. [Proof of Theorem
1.1] <!-- MATH
$\left(\Longrightarrow\right)$
-->
Suppose that
is of the form
, that <!-- MATH
$p^r\mid\mid n$
-->
(exactly divides) with
odd, and that
. Letting <!-- MATH
$d=\gcd(x,y)$
-->
, we have <!-- MATH
\begin{displaymath}
x = dx', \quad y = dy', \quad n = d^2 n'
\end{displaymath}
-->
with <!-- MATH
$\gcd(x',y')=1$
-->
and <!-- MATH
\begin{displaymath}
(x')^2 + (y')^2 = n'.
\end{displaymath}
-->
Because is odd, , so Lemma1.5 implies that <!-- MATH
$\gcd(x',y')>1$
-->, a contradiction.
<!-- MATH
$\left(\Longleftarrow\right)$
--> Write <!-- MATH
$n=n_1^2 n_2$
--> where has no prime factors of the form . It suffices to show that is a sum of two squares. Also note that <!-- MATH
\begin{displaymath}
(x_1^2 + y_1^2)(x_2^2+y_2^2) = (x_1x_2+y_1y_2)^2 + (x_1y_2-x_2y_1)^2,
\end{displaymath}
-->
so a product of two numbers that are sums of two squares is also a sum of two squares.
1Also, the prime
is a sum of two squares. It thus suffices to show that if
is a prime of the form
, then
is a sum of two squares.
Since <!-- MATH
\begin{displaymath}
(-1)^{\frac{p-1}{2}} = (-1)^{\frac{4m+1-1}{2}} = +1,
\end{displaymath}
-->
is a square modulo
; i.e., there exists
such that <!-- MATH
$r^2\equiv -1\pmod{p}$
-->
. Taking <!-- MATH
$n=\lfloor \sqrt{p}\rfloor$
-->
in Lemma
1.3 we see that there are integers
such that <!-- MATH
$0<b<\sqrt{p}$
-->
and <!-- MATH
\begin{displaymath}
\left| -\frac{r}{p} - \frac{a}{b}\right| \leq\frac{1}{b(n+1)} < \frac{1}{b\sqrt{p}}.
\end{displaymath}
-->
If we write <!-- MATH
\begin{displaymath}
c = rb + pa
\end{displaymath}
-->
then <!-- MATH
\begin{displaymath}
|c| < \frac{pb}{b\sqrt{p}} = \frac{p}{\sqrt{p}} = \sqrt{p}
\end{displaymath}
-->
and <!-- MATH
\begin{displaymath}
0 < b^2 + c^2 < 2p.
\end{displaymath}
-->
But <!-- MATH
$c \equiv rb\pmod{p}$
-->
, so <!-- MATH
\begin{displaymath}
b^2 + c^2 \equiv b^2 + r^2 b^2 \equiv b^2(1+r^2) \equiv 0\pmod{p}.
\end{displaymath}
-->
Thus <!-- MATH
$b^2 + c^2 = p$
-->
.
分享到:
相关推荐
In order to make our extensive series of lecture notes more readily ... The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text.
Least-squares estimation of transformation parameters between two point patterns。 相似变换相当于等距变换和均匀缩放的一个复合,即为: 左上角2*2矩阵为旋转部分,右上角为平移因子。它有四个自由度,即旋转...
《SumOfSquares.jl:Julia语言的平方和编程详解》 在计算机科学和数学领域,优化问题占据了核心地位,而SumOfSquares(SOS)编程是解决这类问题的一种强大工具。SumOfSquares.jl是用Julia语言实现的库,专门用于...
关于总体最小二乘问题(Total Least Squares Problem, TLS)的条件数的研究,是中国学者贾仲孝和李冰玉所著的科研成果。总体最小二乘问题是一种数学优化问题,其在处理带有误差的数据时,比传统的最小二乘问题...
Regrettably, some of the squares are infertile and can't be planted. Canny FJ knows that the cows dislike eating close to each other, so when choosing which squares to plant, he avoids choosing ...
整体最小二乘问题(The Total Least Squares Problem)是统计学与数值分析领域中的一个重要概念,尤其是在处理具有误差的数据集时尤为关键。本文将基于提供的标题、描述、标签以及部分内容,深入探讨整体最小二乘的...
The simple world program simulates a number of creatures running around in a simple square world The world is an m by n two dimensional grid of squares The number m represents the height of the grid ...
在GPS导航系统和其他位置定位技术中,两种最常用的估计方法是最小二乘法(Least Squares, LS)和卡尔曼滤波(Kalman Filtering, KF)。这两种方法虽然表面上看起来有很大区别,但实际上它们之间的差异并不像人们初次...
Partial Least Squares (PLS) Analysis was first developed in the late 60’s by Herman Wold, and works on the assumption that the focus of analysis is on which aspects of the signal in one matrix are ...
描述中的关键词"computes the total sum of squares matrix on given features"揭示了该函数的核心操作。在统计学中,总平方和(Total Sum of Squares, TSS)矩阵通常用于分解因变量的总变异性,它反映了所有观测值...
This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but ...
最小中值二乘(Least Median of Squares,简称LMS)是一种用于估计回归模型参数的稳健统计方法。该方法特别适用于数据集中存在异常值(离群点)时,仍能保持较好的回归性能,是传统最小二乘法(Ordinary Least ...
Circle of Squares: A Simulation On the CD-ROM The Resources Page 15 Objects and Arrays A Refresher on Objects and Arrays Opcodes for Objects Opcodes for Arrays Three-Dimensional Array: A ...
A.2 The Sum of Two Vector Spaces 460 A.3 The Cartesian Product of Two Vector Spaces 461 A.4 The Tensor Product of Two Vector Spaces 461 A.5 The Kronecker Product AB of Two Matrices 462 B The Jordan ...
The third edition has three new chapters on unusual topics related to Kalman filtering and other filtering techniques based on the method of least squares.Chapter 17 presents a type of filter known as...