JIOPi v0.2 建立了类加载模型的基本规则
说明:如未特殊说明,下文中的 JIOPi 均指 JIOPi v0.2 规范
JIOPi主题:蓝图初现
在模块程序中增加非运行时JIOPi标注或Jar文件中增加xml配置,模块Jar既可作为JIOPi模块使用,也可作为POJO模块用于其它程序。
JIOPi v0.2在继承了 JIOPi v0.1POJO兼容的基础上,增加了JIOPi蓝图的全面支持,新增了以下特征和编程风格
- 无需了解实现模块代码细节,按接口API规范使用实现模块
- 接口名短名称注册机制,避免使用冗长接口名
- 模块间自由依赖,依赖模块运行时自动安装部署
- 免部署方式编码风格简化,可直接将变量、函数注册为短名称进行调用
- 模块程序通过标注与实现接口绑定
- 可定义模块类的实例化方式(单例/原型),获取方式(构造函数/工厂方法),以及指定初始化方法
- 模块库增加蓝图部署,以保证同一版本的蓝图使用完全相同的程序
JIOPi的一个重要思想是,开发人员需要使用的是API蓝图,而不是模块,因此,开发人员只需了解蓝图的使用,指定蓝图的实现模块名,即可使用该蓝图,而无需了解实现的细节,如类的实例化方式,相关依赖等。
为了实现这个目标,JIOPi选择使用配置文件来指定运行时的对象加载规则,并提供了非运行时标注来简化配置文件的编写, 非运行时标注可以使得包含JIOPi标注的Java类依然可以运行于非JIOPi环境,而不会出现任何异常。
JIOPi标注分为 Blueprint 和 Module 两类,Blueprint 类标注用于定义和蓝图使用相关的信息,如提供类、方法、变量的短名称访问注册等,Module 类标注是用于 模块开发的,用于定义模块的执行策略,如将实现类与接口绑定,指定实例化方式,工厂方法等,下面将对这些标注逐一介绍。
Blueprint类标注
@Target(ElementType.TYPE)
public @interface Blueprint
指定蓝图的名称,版本和版本类
String name(); 定义蓝图的名称
String version(); 定义蓝图的版本
Class<?> versionInterface(); 定义包含蓝图版本信息的接口类
@Target({ElementType.TYPE,ElementType.METHOD,ElementType.FIELD})
public @interface RegisterControlPanel
进行短名称注册,简化调用代码
String value() default ""; 注册名
Module类标注
@Target(ElementType.TYPE)
public @interface Instantiation
指定类对象的实例化方式
InstanceType type() default InstanceType.PROTOTYPE; 单例模式/原型模式
String factoryMethod() default ""; 使用工厂方法获取对象还是默认构造器
String initMethod() default ""; 定义初始化方法,将在对象被实例化后调用
@Target({ElementType.TYPE})
public @interface RegisterModule
将当前实现类与其实现的接口进行绑定,以便JIOPi容器可以通过接口名查询实现类
String[] value() default {}; 在默认情况下,JIOPi容器会将其与所有实现接口或继承类进行绑定,但有时候可能需要将一个接口的父类和子类指定不同的实现类,这时就必须填写具体要与哪个接口进行绑定
蓝图库
蓝图库增加蓝图配置
<blueprints url-format="http://www.example.org/libroot/jiopi-config-blueprint-${blueprint}.xml"/>
其余配置方式同模块
总结
JIOPi v0.2定义了JIOPi风格的蓝图的基本使用,通过在模块中加入JIOPi标注,屏蔽了模块使用的细节,简化了使用模块的学习曲线。
分享到:
相关推荐
Python课程设计,含有代码注释,新手也可看懂。毕业设计、期末大作业、课程设计、高分必看,下载下来,简单部署,就可以使用。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。
内容概要:本文介绍了使用 Matlab 实现 SO-CNN-SVM 框架进行多输入单输出回归预测的全过程。该框架利用蛇群优化算法(SO)优化卷积神经网络(CNN)和 支持向量机(SVM),实现高效的特征提取和回归预测。文章详细描述了数据预处理、模型构建、SO算法优化、模型训练、可视化和 GUI 设计的步骤,并提供了完整的代码示例。 适合人群:具备一定机器学习和深度学习基础,熟悉 Matlab 编程的研究人员和开发人员。 使用场景及目标:① 工业制造中的设备故障预测和质量控制;② 金融分析中的市场价格预测和风险管理;③ 环境监测中的气候变化和空气质量预测。该框架的目标是提高预测精度,优化模型参数,缩短训练时间,增强模型泛化能力。 阅读建议:本文不仅详细介绍了理论背景和技术细节,还提供了实际操作的代码和 GUI 设计思路,建议读者在阅读过程中结合实际数据和代码进行实验,以更好地理解和掌握相关技术。
Java系统源码+社区养老服务系统 内容概要: 本资源包含了完整的Java前后端源码及说明文档,适用于想要快速搭建并部署Java Web应用程序的开发者、学习者。 技术栈: 后端:Java生态系统,包含Spring Boot、Shiro、MyBatis等,数据库使用Mysql 前端:Vue、Bootstrap、Jquery等 适用场景示例: 1、毕业生希望快速启动一个新的Java Web应用程序。 2、团队寻找一个稳定的模板来加速产品开发周期。 3、教育机构或个人学习者用于教学目的或自学练习。 4、创业公司需要一个可以立即投入使用的MVP(最小可行产品)。
Java系统源码+健身房管理系统 内容概要: 本资源包含了完整的Java前后端源码及说明文档,适用于想要快速搭建并部署Java Web应用程序的开发者、学习者。 技术栈: 后端:Java生态系统,包含Spring Boot、Shiro、MyBatis等,数据库使用Mysql 前端:Vue、Bootstrap、Jquery等 适用场景示例: 1、毕业生希望快速启动一个新的Java Web应用程序。 2、团队寻找一个稳定的模板来加速产品开发周期。 3、教育机构或个人学习者用于教学目的或自学练习。 4、创业公司需要一个可以立即投入使用的MVP(最小可行产品)。
阵列信号处理中,均匀线阵条件下,分析不同信噪比条件下,幅相误差对于测向角度偏差的影响
Python课程设计,含有代码注释,新手也可看懂。毕业设计、期末大作业、课程设计、高分必看,下载下来,简单部署,就可以使用。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。
Python课程设计,含有代码注释,新手也可看懂。毕业设计、期末大作业、课程设计、高分必看,下载下来,简单部署,就可以使用。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。
瓶罐检测26-CreateML、Darknet、Paligemma、TFRecord、VOC数据集合集.rarDetectResiduos-V1 2024-02-24 3:32 PM ============================= *与您的团队在计算机视觉项目上合作 *收集和组织图像 *了解和搜索非结构化图像数据 *注释,创建数据集 *导出,训练和部署计算机视觉模型 *使用主动学习随着时间的推移改善数据集 对于最先进的计算机视觉培训笔记本,您可以与此数据集一起使用 该数据集包括6821张图像。 工具以创建格式注释。 将以下预处理应用于每个图像: *像素数据的自动取向(带有Exif-Arientation剥离) *调整大小为640x640(拉伸) 应用以下扩展来创建每个源图像的3个版本: *水平翻转的50%概率 *垂直翻转的50%概率 * -15和+15度之间的随机旋转 * 0到1.5像素之间的随机高斯模糊
名片管理系统.pdf
瓶子检测3-YOLOv9数据集合集.rarMY_DATASET11-V1 2022-12-28 1:46 AM ============================= *与您的团队在计算机视觉项目上合作 *收集和组织图像 *了解和搜索非结构化图像数据 *注释,创建数据集 *导出,训练和部署计算机视觉模型 *使用主动学习随着时间的推移改善数据集 对于最先进的计算机视觉培训笔记本,您可以与此数据集一起使用 该数据集包括1001张图像。 塑料 - 玻璃金属纸纸以yolov9格式注释。 将以下预处理应用于每个图像: *像素数据的自动取向(带有Exif-Arientation剥离) *调整到224x224(拉伸) 没有应用图像增强技术。
水瓶瓶罐检测58-YOLO(v5至v9)、COCO、CreateML、Darknet、Paligemma、TFRecord、VOC数据集合集.rarQaldyq Suryptau-V2 2024-02-26 8:05 PM ============================= *与您的团队在计算机视觉项目上合作 *收集和组织图像 *了解和搜索非结构化图像数据 *注释,创建数据集 *导出,训练和部署计算机视觉模型 *使用主动学习随着时间的推移改善数据集 对于最先进的计算机视觉培训笔记本,您可以与此数据集一起使用 该数据集包括2328张图像。 以可可格式注释了金属 - 柔性 - plastmassa-qaldyq。 将以下预处理应用于每个图像: *像素数据的自动取向(带有Exif-Arientation剥离) *调整大小为416x416(拉伸) 应用以下扩展来创建每个源图像的3个版本: *随机裁剪图像的0%至10% * -15和+15度之间的随机旋转 *随机的BRIGTHNESS调整-10%至+10% * -7%至 +7%之间的随机暴露调整
Python课程设计,含有代码注释,新手也可看懂。毕业设计、期末大作业、课程设计、高分必看,下载下来,简单部署,就可以使用。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。
使用精品酒销售管理系统的用户分管理员和用户两个角色的权限子模块。 管理员所能使用的功能主要有:主页、个人中心、用户管理、商品分类管理、商品信息管理、系统管理、订单管理等。 用户可以实现主页、个人中心、我的收藏管理、订单管理等。 前台首页可以实现商品信息、新闻资讯、我的、跳转到后台、购物车等。 项目包含完整前后端源码和数据库文件 环境说明: 开发语言:Java 框架:ssm,mybatis JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea Maven包:Maven3.3 服务器:tomcat7
1_io_thread_1734442494401.wmv
java 一个基于Java Web的在线问卷调查系统源码实例 一个基于Java Web的在线问卷调查系统源码实例
网站前台注重的功能实现包括会员注册、系统公告、项目查看、在线留言、关注收藏项目、众筹项目申请,网站后台注重的功能实现包括系统用户管理、用户注册审核、项目类别管理、项目信息管理、投资申请查看、投资申请审核、申请结果反馈。 环境说明: 开发语言:Java 框架:ssm,mybatis JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea Maven包:Maven3.3 服务器:tomcat7
以下是一个关于毕业设计的资源描述和项目源码的简要概述: 资源描述 该毕业设计项目为一个基于Spring Boot的在线学习系统。该项目使用了丰富的资源来确保项目的顺利完成。首先,通过数字图书馆和在线数据库(如谷歌学术)获取了大量的相关文献和最新研究成果,为项目的理论基础提供了坚实的支撑。其次,参考了一些电子书籍和国内外教程资源,学习了相关的开发技巧和最佳实践。此外,项目还利用了Spring Boot、MyBatis等开源框架,以及MySQL数据库,这些资源大大提高了开发效率和系统的稳定性。 在开发过程中,还参与了线上和线下的技术培训和研讨会,与其他开发者交流经验,解决了一些技术难题。这些活动不仅提供了宝贵的学习机会,还帮助更好地理解了项目的需求和实现方式。 项目源码概述 该项目源码主要包括以下几个部分: 后端代码:基于Spring Boot框架,实现了用户管理、课程管理、在线学习、模拟考试等功能。 前端代码:使用HTML、CSS和JavaScript(可能使用Vue.js或React.js)等技术,构建了友好的用户界面,使用户能够方便地浏览课程、进行在线学习和考试。 数据库脚本
如果在运维环境中,尤其是乙方,甲方客户为了安全一般不允许上传破解/绿色版等运维软件,这时候如果有官网下载的运维工具且是免费的,那不就可以正常使用了。 8款软件,显示版本到6,以后可不可以不清楚,现在我用绿色版用不上这个。 包含:xfile、xftp、xlpd、xmanager、xmanager 3d、xmanager powersuite、xshell、xshell plus
广东省深圳市公司申请助理级职称的主要步骤
杂货产品检测43-YOLO(v5至v9)、CreateML、Paligemma、TFRecord、VOC数据集合集.rarIPCV分配-V6 2024-01-21 6:10 PM ============================= *与您的团队在计算机视觉项目上合作 *收集和组织图像 *了解和搜索非结构化图像数据 *注释,创建数据集 *导出,训练和部署计算机视觉模型 *使用主动学习随着时间的推移改善数据集 对于最先进的计算机视觉培训笔记本,您可以与此数据集一起使用 该数据集包括7012张图像。 家庭废物以createMl格式注释。 将以下预处理应用于每个图像: *像素数据的自动取向(带有Exif-Arientation剥离) *调整大小为640x640(拉伸) 没有应用图像增强技术。