因为今天和同事谈到了ARM平台下数据总线宽度及对齐方式对程序效率的影响问题
在定义结构数据类型时,为了提高系统效率,要注意字长对齐原则。
1.
先看下面的例子:
#include <iostream.h>
#pragma pack(4)
struct A
{
char a;
int b;
};
#pragma pack()
#pragma pack(1)
struct B
{
char a;
int b;
};
#pragma pack()
int main()
{
A a;
cout<<sizeof(a); //8
B b;
cout<<sizeof(b); //5
}
默认的vc我记得是4字节对齐,而ADS下是一字节对齐。
先谈PC下的对齐:
大家可以看到在ms的vc下按4字节对齐和1字节对齐的结果是截然不同的分别为8和5为什么会有这样的结果呢?这就是x86上字节对齐的作用。为了加快程序执行的速度,一些体系结构以对齐的方式设襁POST http://blog.ycul.com/post.php HTTP/1.0 D?长作为对齐边界。对于一些结构体变量,整个结构要对齐在内部成员变量最大的对齐边界,如A,整个结构以4为对齐边界,所以sizeof(a)为8,而不是5。
如果是原始我们概念下的的A中的成员将会一个挨一个存储 应该只有char+int只有5个字节这个差异就是由于对齐导致的显然我们可以看到 A的对齐要比B浪费3个字节的存储空间那为什么还要采取对齐呢?
那是因为体系结构的对齐和不对齐,是在时间和空间上的一个权衡。
字节对齐节省了时间。应该是设计者考虑用空间换取时间。
为什么说对齐会提高效率呢节省时间?我想大家要理解的重点之重点就在这里了
在我们常用的PC下总线宽度是32位
1.如果是总线宽度对齐的话
那么所有读写操作都是获取一个<=32位数据可以一次保证在数据总线传输完毕。没有任何的额外消耗。
|1|2|3|4|5|6|7|8|
从1开始这里是a的起始位置,5起始为b的位置 访问的时候
如果访问a一次在总线传输8位其他24位无效的
访问b时则一次在总线上传输32完成
读写均是一次完整
插说一下:读操作先要将读地址放到地址总线上然后下个时钟周期再从外部
存储器接口上读回数据通过数据总线返回需要两个周期
而写操作一次将地址及数据写入相应总线就完成了。
读操作要比写操作慢一半
2.我们看访问数据时如果不对齐地址的情况
|1|2|3|4|5|6|7|8|
此时a的地址没变还在1而因为是不对齐则b的位置就在2处
这时访问就带来效率上问题 访问a时没问题还是读会一个字节
但是2处地址因为不是总线宽度对齐一般的CPU在此地址操作将产生error
如sparc,MIPS。它们在硬件的设计上就强制性的要求对齐。在不对齐的地址上肯定发生错误。但是x86是支持非对齐访问的。
它通过多次访问来拼接得到的结果,具体做法就是从1地址处先读回后三字节234 暂存起来。然后再由5地址处读回一个字节5 与234进行拼接组成一个完整的int也就是b返回。
大家看看如此的操作带来的消耗多了不止三倍。很明显在字长对齐时效率要高许多。但然这种效率仅仅是访问多字节带来的。如果还是进行的byte操作那效率差不了多少。
嵌入式开发普遍比较重视性能,所以对齐的问题,有3种不同的处理方法:
1)有一种使用空间换时间做法是显式的插入reserved成员:
struct A{
char a;
char reserved1[3]; //使用空间换时间
int b;
}a; ==>感觉此种编码方式比较专业,有显式提醒代码阅读者与维护者的功能...
2)随便怎么写,一切交给编译器自动对齐。
3)还有一种将逻辑相关的数据放在一起定义。
代码中关于对齐的隐患,很多是隐式的。比如在强制类型转换的时候。下面举个例子:
unsigned int i = 0x12345678;
unsigned char *p=NULL;
unsigned short *p1=NULL;
p=&i;
*p=0x00;
p1=(unsigned short *)(p+1);
*p1=0x0000;
最后两句代码,从奇数边界去访问unsignedshort型变量,显然不符合对齐的规定。
在x86上,类似的操作只会影响效率,但是在MIPS或者sparc上,可能就是一个error。
相关推荐
这意味着在这个二序遍历过程中,首先遍历了左侧的最深分支,然后返回到根节点,再遍历右侧的最深分支。 ### 2. FlowLayout类中的对齐方式 **题目描述**:询问FlowLayout类中用于表示对齐方式的常量有哪些。 **...
- 举例说明了分块传输的实例。 7. RTMP协议控制消息: - 描述了RTMP协议控制消息的种类,比如设置分块大小、中止消息、确认消息等。 - 详细讲解了每个控制消息的用途和交互细节。 8. RTMP消息格式详细描述: -...
- 通过指针和数组声明举例说明(如char str1[]="abc";与const char str3[]="abc";)。 - 字符串字面量的比较,区分指针比较与内容比较。 - sizeof关键字的使用,理解其在不同场合下计算数组长度的方法。 - const...
块式管理:把主存分为一大块、一大块的,当所需的程序片断不在主存时就分配一块主存空间,把程 序片断load入主存,就算所需的程序片度只有几个字节也只能把这一块分配给它。这样会造成很大的浪费,平均浪费了50%的...
嵌入式八股文面试题库资料知识宝典-华为的面试试题.zip
训练导控系统设计.pdf
嵌入式八股文面试题库资料知识宝典-网络编程.zip
人脸转正GAN模型的高效压缩.pdf
少儿编程scratch项目源代码文件案例素材-几何冲刺 转瞬即逝.zip
少儿编程scratch项目源代码文件案例素材-鸡蛋.zip
嵌入式系统_USB设备枚举与HID通信_CH559单片机USB主机键盘鼠标复合设备控制_基于CH559单片机的USB主机模式设备枚举与键盘鼠标数据收发系统支持复合设备识别与HID
嵌入式八股文面试题库资料知识宝典-linux常见面试题.zip
面向智慧工地的压力机在线数据的预警应用开发.pdf
基于Unity3D的鱼类运动行为可视化研究.pdf
少儿编程scratch项目源代码文件案例素材-霍格沃茨魔法学校.zip
少儿编程scratch项目源代码文件案例素材-金币冲刺.zip
内容概要:本文深入探讨了HarmonyOS编译构建子系统的作用及其技术细节。作为鸿蒙操作系统背后的关键技术之一,编译构建子系统通过GN和Ninja工具实现了高效的源代码到机器代码的转换,确保了系统的稳定性和性能优化。该系统不仅支持多系统版本构建、芯片厂商定制,还具备强大的调试与维护能力。其高效编译速度、灵活性和可扩展性使其在华为设备和其他智能终端中发挥了重要作用。文章还比较了HarmonyOS编译构建子系统与安卓和iOS编译系统的异同,并展望了其未来的发展趋势和技术演进方向。; 适合人群:对操作系统底层技术感兴趣的开发者、工程师和技术爱好者。; 使用场景及目标:①了解HarmonyOS编译构建子系统的基本概念和工作原理;②掌握其在不同设备上的应用和优化策略;③对比HarmonyOS与安卓、iOS编译系统的差异;④探索其未来发展方向和技术演进路径。; 其他说明:本文详细介绍了HarmonyOS编译构建子系统的架构设计、核心功能和实际应用案例,强调了其在万物互联时代的重要性和潜力。阅读时建议重点关注编译构建子系统的独特优势及其对鸿蒙生态系统的深远影响。
嵌入式八股文面试题库资料知识宝典-奇虎360 2015校园招聘C++研发工程师笔试题.zip
嵌入式八股文面试题库资料知识宝典-腾讯2014校园招聘C语言笔试题(附答案).zip
双种群变异策略改进RWCE算法优化换热网络.pdf