- 浏览: 4506 次
- 性别:
- 来自: 杭州
文章分类
最新评论
package sortDemo;
import java.util.Random;
/**
* 排序测试类
*
* 排序算法的分类如下:
* 1.插入排序(直接插入排序、折半插入排序、希尔排序);
* 2.交换排序(冒泡泡排序、快速排序);
* 3.选择排序(直接选择排序、堆排序);
* 4.归并排序;
* 5.基数排序。
*
* 关于排序方法的选择:
* (1)若n较小(如n≤50),可采用直接插入或直接选择排序。
* 当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插人,应选直接选择排序为宜。
* (2)若文件初始状态基本有序(指正序),则应选用直接插人、冒泡或随机的快速排序为宜;
* (3)若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。
*
*/
public class SortDemo {
/**
* 初始化测试数组的方法
* @return 一个初始化好的数组
*/
public int[] createArray() {
Random random = new Random();
int[] array = new int[10];
for (int i = 0; i < 10; i++) {
array[i] = random.nextInt(100) - random.nextInt(100);//生成两个随机数相减,保证生成的数中有负数
}
System.out.println("==========原始序列==========");
printArray(array);
return array;
}
/**
* 打印数组中的元素到控制台
* @param source
*/
public void printArray(int[] data) {
for (int i : data) {
System.out.print(i + " ");
}
System.out.println();
}
/**
* 交换数组中指定的两元素的位置
* @param data
* @param x
* @param y
*/
private void swap(int[] data, int x, int y) {
int temp = data[x];
data[x] = data[y];
data[y] = temp;
}
/**
* 冒泡排序----交换排序的一种
* 方法:相邻两元素进行比较,如有需要则进行交换,每完成一次循环就将最大元素排在最后(如从小到大排序),下一次循环是将其他的数进行类似操作。
* 性能:比较次数O(n^2),n^2/2;交换次数O(n^2),n^2/4
*
* @param data 要排序的数组
* @param sortType 排序类型
* @return
* int len1=a.length;行长度
* int len2=a[i].length;列长度
*/
public void bubbleSort(int[] data, String sortType) {
if (sortType.equals("asc")) { //正排序,从小排到大
//比较的轮数
for (int i = 1; i < data.length; i++) {
//将相邻两个数进行比较,较大的数往后冒泡
for (int j = 0; j < data.length - i; j++) {
if (data[j] > data[j + 1]) {
//交换相邻两个数
swap(data, j, j + 1);
}
}
}
} else if (sortType.equals("desc")) { //倒排序,从大排到小
//比较的轮数
for (int i = 1; i < data.length; i++) {
//将相邻两个数进行比较,较大的数往后冒泡
for (int j = 0; j < data.length - i; j++) {
if (data[j] < data[j + 1]) {
//交换相邻两个数
swap(data, j, j + 1);
}
}
}
} else {
System.out.println("您输入的排序类型错误!");
}
printArray(data);//输出冒泡排序后的数组值
}
/**
* 直接选择排序法----选择排序的一种
* 方法:每一趟从待排序的数据元素中选出最小(或最大)的一个元素, 顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
* 性能:比较次数O(n^2),n^2/2
* 交换次数O(n),n
* 交换次数比冒泡排序少多了,由于交换所需CPU时间比比较所需的CUP时间多,所以选择排序比冒泡排序快。
* 但是N比较大时,比较所需的CPU时间占主要地位,所以这时的性能和冒泡排序差不太多,但毫无疑问肯定要快些。
*
* @param data 要排序的数组
* @param sortType 排序类型
* @return
*/
public void selectSort(int[] data, String sortType) {
if (sortType.equals("asc")) { //正排序,从小排到大
int index;
for (int i = 1; i < data.length; i++) {
index = 0;
for (int j = 1; j <= data.length - i; j++) {
if (data[j] > data[index]) {
index = j;
}
}
//交换在位置data.length-i和index(最大值)两个数
swap(data, data.length - i, index);
}
} else if (sortType.equals("desc")) { //倒排序,从大排到小
int index;
for (int i = 1; i < data.length; i++) {
index = 0;
for (int j = 1; j <= data.length - i; j++) {
if (data[j] < data[index]) {
index = j;
}
}
//交换在位置data.length-i和index(最大值)两个数
swap(data, data.length - i, index);
}
} else {
System.out.println("您输入的排序类型错误!");
}
printArray(data);//输出直接选择排序后的数组值
}
/**
* 插入排序
* 方法:将一个记录插入到已排好序的有序表(有可能是空表)中,从而得到一个新的记录数增1的有序表。
* 性能:比较次数O(n^2),n^2/4
* 复制次数O(n),n^2/4
* 比较次数是前两者的一般,而复制所需的CPU时间较交换少,所以性能上比冒泡排序提高一倍多,而比选择排序也要快。
*
* @param data 要排序的数组
* @param sortType 排序类型
*/
public void insertSort(int[] data, String sortType) {
if (sortType.equals("asc")) { //正排序,从小排到大
//比较的轮数
for (int i = 1; i < data.length; i++) {
//保证前i+1个数排好序
for (int j = 0; j < i; j++) {
if (data[j] > data[i]) {
//交换在位置j和i两个数
swap(data, i, j);
}
}
}
} else if (sortType.equals("desc")) { //倒排序,从大排到小
//比较的轮数
for (int i = 1; i < data.length; i++) {
//保证前i+1个数排好序
for (int j = 0; j < i; j++) {
if (data[j] < data[i]) {
//交换在位置j和i两个数
swap(data, i, j);
}
}
}
} else {
System.out.println("您输入的排序类型错误!");
}
printArray(data);//输出插入排序后的数组值
}
/**
* 反转数组的方法
* @param data 源数组
*/
public void reverse(int[] data) {
int length = data.length;
int temp = 0;//临时变量
for (int i = 0; i < length / 2; i++) {
temp = data[i];
data[i] = data[length - 1 - i];
data[length - 1 - i] = temp;
}
printArray(data);//输出到转后数组的值
}
/**
* 快速排序
* 快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists)。
* 步骤为:
* 1. 从数列中挑出一个元素,称为 "基准"(pivot),
* 2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分割之后,该基准是它的最后位置。这个称为分割(partition)操作。
* 3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
* 递回的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递回下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
* @param data 待排序的数组
* @param low
* @param high
* @see SortTest#qsort(int[], int, int)
* @see SortTest#qsort_desc(int[], int, int)
*/
public void quickSort(int[] data, String sortType) {
if (sortType.equals("asc")) { //正排序,从小排到大
qsort_asc(data, 0, data.length - 1);
} else if (sortType.equals("desc")) { //倒排序,从大排到小
qsort_desc(data, 0, data.length - 1);
} else {
System.out.println("您输入的排序类型错误!");
}
}
/**
* 快速排序的具体实现,排正序
* @param data
* @param low
* @param high
*/
private void qsort_asc(int data[], int low, int high) {
int i, j, x;
if (low < high) { //这个条件用来结束递归
i = low;
j = high;
x = data[i];
while (i < j) {
while (i < j && data[j] > x) {
j--; //从右向左找第一个小于x的数
}
if (i < j) {
data[i] = data[j];
i++;
}
while (i < j && data[i] < x) {
i++; //从左向右找第一个大于x的数
}
if (i < j) {
data[j] = data[i];
j--;
}
}
data[i] = x;
qsort_asc(data, low, i - 1);
qsort_asc(data, i + 1, high);
}
}
/**
* 快速排序的具体实现,排倒序
* @param data
* @param low
* @param high
*/
private void qsort_desc(int data[], int low, int high) {
int i, j, x;
if (low < high) { //这个条件用来结束递归
i = low;
j = high;
x = data[i];
while (i < j) {
while (i < j && data[j] < x) {
j--; //从右向左找第一个小于x的数
}
if (i < j) {
data[i] = data[j];
i++;
}
while (i < j && data[i] > x) {
i++; //从左向右找第一个大于x的数
}
if (i < j) {
data[j] = data[i];
j--;
}
}
data[i] = x;
qsort_desc(data, low, i - 1);
qsort_desc(data, i + 1, high);
}
}
/**
*二分查找特定整数在整型数组中的位置(递归)
*查找线性表必须是有序列表
*@paramdataset
*@paramdata
*@parambeginIndex
*@paramendIndex
*@returnindex
*/
public int binarySearch(int[] dataset, int data, int beginIndex,
int endIndex) {
int midIndex = (beginIndex + endIndex) >>> 1; //相当于mid = (low + high) / 2,但是效率会高些
if (data < dataset[beginIndex] || data > dataset[endIndex]
|| beginIndex > endIndex)
return -1;
if (data < dataset[midIndex]) {
return binarySearch(dataset, data, beginIndex, midIndex - 1);
} else if (data > dataset[midIndex]) {
return binarySearch(dataset, data, midIndex + 1, endIndex);
} else {
return midIndex;
}
}
/**
*二分查找特定整数在整型数组中的位置(非递归)
*查找线性表必须是有序列表
*@paramdataset
*@paramdata
*@returnindex
*/
public int binarySearch(int[] dataset, int data) {
int beginIndex = 0;
int endIndex = dataset.length - 1;
int midIndex = -1;
if (data < dataset[beginIndex] || data > dataset[endIndex]
|| beginIndex > endIndex)
return -1;
while (beginIndex <= endIndex) {
midIndex = (beginIndex + endIndex) >>> 1; //相当于midIndex = (beginIndex + endIndex) / 2,但是效率会高些
if (data < dataset[midIndex]) {
endIndex = midIndex - 1;
} else if (data > dataset[midIndex]) {
beginIndex = midIndex + 1;
} else {
return midIndex;
}
}
return -1;
}
public static void main(String[] args) {
SortDemo sortTest = new SortDemo();
int[] array = sortTest.createArray();
System.out.println("==========冒泡排序后(正序)==========");
sortTest.bubbleSort(array, "asc");
System.out.println("==========冒泡排序后(倒序)==========");
sortTest.bubbleSort(array, "desc");
array = sortTest.createArray();
System.out.println("==========倒转数组后==========");
sortTest.reverse(array);
array = sortTest.createArray();
System.out.println("==========选择排序后(正序)==========");
sortTest.selectSort(array, "asc");
System.out.println("==========选择排序后(倒序)==========");
sortTest.selectSort(array, "desc");
array = sortTest.createArray();
System.out.println("==========插入排序后(正序)==========");
sortTest.insertSort(array, "asc");
System.out.println("==========插入排序后(倒序)==========");
sortTest.insertSort(array, "desc");
array = sortTest.createArray();
System.out.println("==========快速排序后(正序)==========");
sortTest.quickSort(array, "asc");
sortTest.printArray(array);
System.out.println("==========快速排序后(倒序)==========");
sortTest.quickSort(array, "desc");
sortTest.printArray(array);
System.out.println("==========数组二分查找==========");
System.out.println("您要找的数在第" + sortTest.binarySearch(array, 74)
+ "个位子。(下标从0计算)");
String sss= "12345678901234";
System.out.println(sss.substring(0,11));
}
}
import java.util.Random;
/**
* 排序测试类
*
* 排序算法的分类如下:
* 1.插入排序(直接插入排序、折半插入排序、希尔排序);
* 2.交换排序(冒泡泡排序、快速排序);
* 3.选择排序(直接选择排序、堆排序);
* 4.归并排序;
* 5.基数排序。
*
* 关于排序方法的选择:
* (1)若n较小(如n≤50),可采用直接插入或直接选择排序。
* 当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插人,应选直接选择排序为宜。
* (2)若文件初始状态基本有序(指正序),则应选用直接插人、冒泡或随机的快速排序为宜;
* (3)若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。
*
*/
public class SortDemo {
/**
* 初始化测试数组的方法
* @return 一个初始化好的数组
*/
public int[] createArray() {
Random random = new Random();
int[] array = new int[10];
for (int i = 0; i < 10; i++) {
array[i] = random.nextInt(100) - random.nextInt(100);//生成两个随机数相减,保证生成的数中有负数
}
System.out.println("==========原始序列==========");
printArray(array);
return array;
}
/**
* 打印数组中的元素到控制台
* @param source
*/
public void printArray(int[] data) {
for (int i : data) {
System.out.print(i + " ");
}
System.out.println();
}
/**
* 交换数组中指定的两元素的位置
* @param data
* @param x
* @param y
*/
private void swap(int[] data, int x, int y) {
int temp = data[x];
data[x] = data[y];
data[y] = temp;
}
/**
* 冒泡排序----交换排序的一种
* 方法:相邻两元素进行比较,如有需要则进行交换,每完成一次循环就将最大元素排在最后(如从小到大排序),下一次循环是将其他的数进行类似操作。
* 性能:比较次数O(n^2),n^2/2;交换次数O(n^2),n^2/4
*
* @param data 要排序的数组
* @param sortType 排序类型
* @return
* int len1=a.length;行长度
* int len2=a[i].length;列长度
*/
public void bubbleSort(int[] data, String sortType) {
if (sortType.equals("asc")) { //正排序,从小排到大
//比较的轮数
for (int i = 1; i < data.length; i++) {
//将相邻两个数进行比较,较大的数往后冒泡
for (int j = 0; j < data.length - i; j++) {
if (data[j] > data[j + 1]) {
//交换相邻两个数
swap(data, j, j + 1);
}
}
}
} else if (sortType.equals("desc")) { //倒排序,从大排到小
//比较的轮数
for (int i = 1; i < data.length; i++) {
//将相邻两个数进行比较,较大的数往后冒泡
for (int j = 0; j < data.length - i; j++) {
if (data[j] < data[j + 1]) {
//交换相邻两个数
swap(data, j, j + 1);
}
}
}
} else {
System.out.println("您输入的排序类型错误!");
}
printArray(data);//输出冒泡排序后的数组值
}
/**
* 直接选择排序法----选择排序的一种
* 方法:每一趟从待排序的数据元素中选出最小(或最大)的一个元素, 顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
* 性能:比较次数O(n^2),n^2/2
* 交换次数O(n),n
* 交换次数比冒泡排序少多了,由于交换所需CPU时间比比较所需的CUP时间多,所以选择排序比冒泡排序快。
* 但是N比较大时,比较所需的CPU时间占主要地位,所以这时的性能和冒泡排序差不太多,但毫无疑问肯定要快些。
*
* @param data 要排序的数组
* @param sortType 排序类型
* @return
*/
public void selectSort(int[] data, String sortType) {
if (sortType.equals("asc")) { //正排序,从小排到大
int index;
for (int i = 1; i < data.length; i++) {
index = 0;
for (int j = 1; j <= data.length - i; j++) {
if (data[j] > data[index]) {
index = j;
}
}
//交换在位置data.length-i和index(最大值)两个数
swap(data, data.length - i, index);
}
} else if (sortType.equals("desc")) { //倒排序,从大排到小
int index;
for (int i = 1; i < data.length; i++) {
index = 0;
for (int j = 1; j <= data.length - i; j++) {
if (data[j] < data[index]) {
index = j;
}
}
//交换在位置data.length-i和index(最大值)两个数
swap(data, data.length - i, index);
}
} else {
System.out.println("您输入的排序类型错误!");
}
printArray(data);//输出直接选择排序后的数组值
}
/**
* 插入排序
* 方法:将一个记录插入到已排好序的有序表(有可能是空表)中,从而得到一个新的记录数增1的有序表。
* 性能:比较次数O(n^2),n^2/4
* 复制次数O(n),n^2/4
* 比较次数是前两者的一般,而复制所需的CPU时间较交换少,所以性能上比冒泡排序提高一倍多,而比选择排序也要快。
*
* @param data 要排序的数组
* @param sortType 排序类型
*/
public void insertSort(int[] data, String sortType) {
if (sortType.equals("asc")) { //正排序,从小排到大
//比较的轮数
for (int i = 1; i < data.length; i++) {
//保证前i+1个数排好序
for (int j = 0; j < i; j++) {
if (data[j] > data[i]) {
//交换在位置j和i两个数
swap(data, i, j);
}
}
}
} else if (sortType.equals("desc")) { //倒排序,从大排到小
//比较的轮数
for (int i = 1; i < data.length; i++) {
//保证前i+1个数排好序
for (int j = 0; j < i; j++) {
if (data[j] < data[i]) {
//交换在位置j和i两个数
swap(data, i, j);
}
}
}
} else {
System.out.println("您输入的排序类型错误!");
}
printArray(data);//输出插入排序后的数组值
}
/**
* 反转数组的方法
* @param data 源数组
*/
public void reverse(int[] data) {
int length = data.length;
int temp = 0;//临时变量
for (int i = 0; i < length / 2; i++) {
temp = data[i];
data[i] = data[length - 1 - i];
data[length - 1 - i] = temp;
}
printArray(data);//输出到转后数组的值
}
/**
* 快速排序
* 快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists)。
* 步骤为:
* 1. 从数列中挑出一个元素,称为 "基准"(pivot),
* 2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分割之后,该基准是它的最后位置。这个称为分割(partition)操作。
* 3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
* 递回的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递回下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
* @param data 待排序的数组
* @param low
* @param high
* @see SortTest#qsort(int[], int, int)
* @see SortTest#qsort_desc(int[], int, int)
*/
public void quickSort(int[] data, String sortType) {
if (sortType.equals("asc")) { //正排序,从小排到大
qsort_asc(data, 0, data.length - 1);
} else if (sortType.equals("desc")) { //倒排序,从大排到小
qsort_desc(data, 0, data.length - 1);
} else {
System.out.println("您输入的排序类型错误!");
}
}
/**
* 快速排序的具体实现,排正序
* @param data
* @param low
* @param high
*/
private void qsort_asc(int data[], int low, int high) {
int i, j, x;
if (low < high) { //这个条件用来结束递归
i = low;
j = high;
x = data[i];
while (i < j) {
while (i < j && data[j] > x) {
j--; //从右向左找第一个小于x的数
}
if (i < j) {
data[i] = data[j];
i++;
}
while (i < j && data[i] < x) {
i++; //从左向右找第一个大于x的数
}
if (i < j) {
data[j] = data[i];
j--;
}
}
data[i] = x;
qsort_asc(data, low, i - 1);
qsort_asc(data, i + 1, high);
}
}
/**
* 快速排序的具体实现,排倒序
* @param data
* @param low
* @param high
*/
private void qsort_desc(int data[], int low, int high) {
int i, j, x;
if (low < high) { //这个条件用来结束递归
i = low;
j = high;
x = data[i];
while (i < j) {
while (i < j && data[j] < x) {
j--; //从右向左找第一个小于x的数
}
if (i < j) {
data[i] = data[j];
i++;
}
while (i < j && data[i] > x) {
i++; //从左向右找第一个大于x的数
}
if (i < j) {
data[j] = data[i];
j--;
}
}
data[i] = x;
qsort_desc(data, low, i - 1);
qsort_desc(data, i + 1, high);
}
}
/**
*二分查找特定整数在整型数组中的位置(递归)
*查找线性表必须是有序列表
*@paramdataset
*@paramdata
*@parambeginIndex
*@paramendIndex
*@returnindex
*/
public int binarySearch(int[] dataset, int data, int beginIndex,
int endIndex) {
int midIndex = (beginIndex + endIndex) >>> 1; //相当于mid = (low + high) / 2,但是效率会高些
if (data < dataset[beginIndex] || data > dataset[endIndex]
|| beginIndex > endIndex)
return -1;
if (data < dataset[midIndex]) {
return binarySearch(dataset, data, beginIndex, midIndex - 1);
} else if (data > dataset[midIndex]) {
return binarySearch(dataset, data, midIndex + 1, endIndex);
} else {
return midIndex;
}
}
/**
*二分查找特定整数在整型数组中的位置(非递归)
*查找线性表必须是有序列表
*@paramdataset
*@paramdata
*@returnindex
*/
public int binarySearch(int[] dataset, int data) {
int beginIndex = 0;
int endIndex = dataset.length - 1;
int midIndex = -1;
if (data < dataset[beginIndex] || data > dataset[endIndex]
|| beginIndex > endIndex)
return -1;
while (beginIndex <= endIndex) {
midIndex = (beginIndex + endIndex) >>> 1; //相当于midIndex = (beginIndex + endIndex) / 2,但是效率会高些
if (data < dataset[midIndex]) {
endIndex = midIndex - 1;
} else if (data > dataset[midIndex]) {
beginIndex = midIndex + 1;
} else {
return midIndex;
}
}
return -1;
}
public static void main(String[] args) {
SortDemo sortTest = new SortDemo();
int[] array = sortTest.createArray();
System.out.println("==========冒泡排序后(正序)==========");
sortTest.bubbleSort(array, "asc");
System.out.println("==========冒泡排序后(倒序)==========");
sortTest.bubbleSort(array, "desc");
array = sortTest.createArray();
System.out.println("==========倒转数组后==========");
sortTest.reverse(array);
array = sortTest.createArray();
System.out.println("==========选择排序后(正序)==========");
sortTest.selectSort(array, "asc");
System.out.println("==========选择排序后(倒序)==========");
sortTest.selectSort(array, "desc");
array = sortTest.createArray();
System.out.println("==========插入排序后(正序)==========");
sortTest.insertSort(array, "asc");
System.out.println("==========插入排序后(倒序)==========");
sortTest.insertSort(array, "desc");
array = sortTest.createArray();
System.out.println("==========快速排序后(正序)==========");
sortTest.quickSort(array, "asc");
sortTest.printArray(array);
System.out.println("==========快速排序后(倒序)==========");
sortTest.quickSort(array, "desc");
sortTest.printArray(array);
System.out.println("==========数组二分查找==========");
System.out.println("您要找的数在第" + sortTest.binarySearch(array, 74)
+ "个位子。(下标从0计算)");
String sss= "12345678901234";
System.out.println(sss.substring(0,11));
}
}
- SortDemo.rar (3.3 KB)
- 下载次数: 0
发表评论
文章已被作者锁定,不允许评论。
相关推荐
在给出的标题"java汉字笔画排序2例子及jar包"中,我们可以推断这是一个关于Java实现汉字笔画排序的项目,其中可能包含了两种不同的实现方式或者优化后的版本。 描述中提到,"对排序方法重新定义,减少占用,效率...
在这个"java常用例子(队列,排序,列表,时间,文件操作)40例子"的资源中,初学者可以深入理解Java的核心概念和常用操作。下面我们将详细探讨这些主题。 首先,让我们从队列开始。在计算机科学中,队列是一种先进先出...
用Java实现的散列排序,有详细的代码,供各位参考
总结来说,这个Java策略模式排序算法的例子展示了如何利用设计模式来实现动态行为选择,同时涵盖了三种经典的排序算法。通过这种方式,开发者可以更方便地在不同排序算法之间切换,适应不同的性能需求或特定场景。...
Java编程例子是初学者入门和进阶的重要资源,它涵盖了各种基本概念、语法以及常见的算法应用。这个压缩包文件提供了一系列的Java编程示例,旨在帮助学习者更好地理解和掌握这门语言。 首先,让我们深入了解一下Java...
在编程领域,排序算法是计算机科学中的核心概念,尤其是在Java这样的高级编程语言中。Java提供了丰富的内置库函数,如Arrays.sort(),可以方便地对数组进行排序。然而,理解并掌握各种排序算法对于优化程序性能、...
在这个例子中,我们首先创建了一个`Collator`实例,指定了`Locale.CHINA`,这样排序规则就会按照中文的习惯进行。然后,通过`setStrength()`方法设置排序强度,这里我们选择了`PRIMARY`,这意味着它将忽略字符的大小...
总结一下,Java实现拖拽列表项的排序功能主要包括以下步骤: 1. 启用UI组件的拖放功能,如设置`AllowDrop`、`CanReorderItems`和`IsSwipeEnabled`属性。 2. 监听并处理拖放事件,更新数据模型以反映拖放操作。 3. ...
在Java编程语言中,排序是数据处理中非常常见的任务...这只是Java排序的一个简单示例,实际应用中可能涉及更复杂的排序逻辑,例如多字段排序或自定义排序规则。了解这些基本概念后,你就可以灵活地处理各种排序需求了。
在这个例子中,`Person`对象按年龄先排序,如果年龄相同,则按名字排序。 接下来是查询条件的处理。在Java 8中,引入了流(Stream)API,这极大地简化了集合的过滤操作。例如,如果我们想从一个Person列表中筛选出...
在这个例子中,我们使用了 SortList 类来对 UserInfo 对象的 userId 字段进行排序。我们可以使用泛型来指定排序的字段,然后使用反射机制来动态地取得方法。 这种方法可以实现对 List 中的对象进行排序,而不需要写...
这个压缩包中的例子可能包括创建、初始化、遍历数组以及执行一些基本操作,如排序和搜索。通过这些例子,初学者可以了解到如何声明不同类型的数组,例如整型(int)、字符型(char)或字符串(String),以及如何访问和...
在Java编程语言中,对中文字符串进行排序是一个相对复杂的问题,因为中文字符的排序不能简单地按照Unicode编码顺序来处理。通常,我们需要考虑汉字的拼音或者笔画等属性来进行排序。这里我们将详细介绍如何使用`...
本资源包包含了多种经典的排序算法,并提供了Java语言的实现示例,包括插入排序、堆排序、冒泡排序、选择排序、归并排序和快速排序。下面将详细阐述这些排序算法的原理、特点以及Java实现。 1. 插入排序(Insertion...
交换排序中最著名的例子是快速排序和冒泡排序。快速排序由C.A.R. Hoare在1960年提出,它采用了分治策略,通过选取一个基准值,将数组分为两部分,使得一部分的所有元素都小于另一部分的所有元素,然后对这两部分递归...
本篇将深入探讨Java数组的相关知识点,并通过实际的例子代码来加深理解。 1. **数组的声明与初始化** 在Java中,我们可以声明一个数组并同时初始化它。例如,创建一个包含5个整数的数组: ```java int[] ...
在这个例子中,我们首先定义了`quickSort`方法来执行快速排序,然后在`partition`方法中实现了分区操作。`main`方法展示了如何调用这些方法来对一个数组进行排序,并打印出排序前后的结果。 快速排序的平均时间...
在这个例子中,我们看到通过使用TreeMap来实现Map元素的排序。TreeMap是基于红黑树的NavigableMap实现,它提供了对元素的排序功能。当创建TreeMap实例时,它会根据键的自然顺序(实现了Comparable接口)或者通过在...