`
jimmee
  • 浏览: 538029 次
  • 性别: Icon_minigender_1
  • 来自: 杭州
社区版块
存档分类
最新评论

MySQL查询优化之explain的深入解析【转载】

阅读更多

可参考mysql的官方文档:http://dev.mysql.com/doc/refman/5.7/en/explain-output.html

在分析查询性能时,考虑EXPLAIN关键字同样很管用。EXPLAIN关键字一般放在SELECT查询语句的前面,用于描述MySQL如何执行查询操作、以及MySQL成功返回结果集需要执行的行数。explain 可以帮助我们分析 select 语句,让我们知道查询效率低下的原因,从而改进我们查询,让查询优化器能够更好的工作。

一、MySQL 查询优化器是如何工作的
MySQL 查询优化器有几个目标,但是其中最主要的目标是尽可能地使用索引,并且使用最严格的索引来消除尽可能多的数据行。最终目标是提交 SELECT 语句查找数据行,而不是排除数据行。优化器试图排除数据行的原因在于它排除数据行的速度越快,那么找到与条件匹配的数据行也就越快。如果能够首先进行最严格的测试,查询就可以执行地更快。
EXPLAIN 的每个输出行提供一个表的相关信息,并且每个行包括下面的列: 

说明
id  MySQL Query Optimizer 选定的执行计划中查询的序列号。表示查询中执行 select 子句或操作表的顺序,id 值越大优先级越高,越先被执行。id 相同,执行顺序由上至下。

 

select_type 查询类型 说明
SIMPLE 简单的 select 查询,不使用 union 及子查询
PRIMARY 最外层的 select 查询
UNION UNION 中的第二个或随后的 select 查询,不 依赖于外部查询的结果集
DEPENDENT UNION UNION 中的第二个或随后的 select 查询,依 赖于外部查询的结果集
SUBQUERY 子查询中的第一个 select 查询,不依赖于外 部查询的结果集
DEPENDENT SUBQUERY 子查询中的第一个 select 查询,依赖于外部 查询的结果集
DERIVED 用于 from 子句里有子查询的情况。 MySQL 会 递归执行这些子查询, 把结果放在临时表里。
UNCACHEABLE SUBQUERY 结果集不能被缓存的子查询,必须重新为外 层查询的每一行进行评估。
UNCACHEABLE UNION UNION 中的第二个或随后的 select 查询,属 于不可缓存的子查询

 

说明
table  输出行所引用的表

 

type 重要的项,显示连接使用的类型,按最 优到最差的类型排序 说明
system  表仅有一行(=系统表)。这是 const 连接类型的一个特例。
const  const 用于用常数值比较 PRIMARY KEY 时。当 查询的表仅有一行时,使用 System。
eq_ref 

One row is read from this table for each combination of rows from the previous tables. Other than the system and const types, this is the best possible join type. It is used when all parts of an index are used by the join and the index is a PRIMARY KEY or UNIQUE NOT NULL index.

SELECT * FROM ref_table,other_table
  WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table
  WHERE ref_table.key_column_part1=other_table.column
  AND ref_table.key_column_part2=1;
ref 

All rows with matching index values are read from this table for each combination of rows from the previous tables. ref is used if the join uses only a leftmost prefix of the key or if the key is not a PRIMARY KEY or UNIQUE index (in other words, if the join cannot select a single row based on the key value). If the key that is used matches only a few rows, this is a good join type.

ref can be used for indexed columns that are compared using the = or <=> operator. In the following examples, MySQL can use a ref join to process ref_table:

SELECT * FROM ref_table WHERE key_column=expr;

SELECT * FROM ref_table,other_table
  WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table
  WHERE ref_table.key_column_part1=other_table.column
  AND ref_table.key_column_part2=1;
ref_or_null 

This join type is like ref, but with the addition that MySQL does an extra search for rows that contain NULL values. This join type optimization is used most often in resolving subqueries. In the following examples, MySQL can use a ref_or_null join to process ref_table:

SELECT * FROM ref_table
  WHERE key_column=expr OR key_column IS NULL;
index_merge  说明索引合并优化被使用了。
unique_subquery 

This type replaces ref for some IN subqueries of the following form:

value IN (SELECT primary_key FROM single_table WHERE some_expr)

unique_subquery is just an index lookup function that replaces the subquery completely for better efficiency.

index_subquery 

This join type is similar to unique_subquery. It replaces IN subqueries, but it works for nonunique indexes in subqueries of the following form:

value IN (SELECT key_column FROM single_table WHERE some_expr)
range 

Only rows that are in a given range are retrieved, using an index to select the rows. The key column in the output row indicates which index is used. The key_len contains the longest key part that was used. The ref column is NULL for this type.

range can be used when a key column is compared to a constant using any of the =<>>>=<<=IS NULL<=>BETWEEN, or IN() operators:

SELECT * FROM tbl_name
  WHERE key_column = 10;

SELECT * FROM tbl_name
  WHERE key_column BETWEEN 10 and 20;

SELECT * FROM tbl_name
  WHERE key_column IN (10,20,30);

SELECT * FROM tbl_name
  WHERE key_part1 = 10 AND key_part2 IN (10,20,30);
index 

The index join type is the same as ALL, except that the index tree is scanned. This occurs two ways:

  • If the index is a covering index for the queries and can be used to satisfy all data required from the table, only the index tree is scanned. In this case, the Extra column says Using index. An index-only scan usually is faster than ALL because the size of the index usually is smaller than the table data.

  • A full table scan is performed using reads from the index to look up data rows in index order. Uses index does not appear in the Extra column.

MySQL can use this join type when the query uses only columns that are part of a single index.

all  最坏的情况,从头到尾全表扫描。



说明
possible_keys  指出 MySQL 能在该表中使用哪些索引有助于 查询。如果为空,说明没有可用的索引。

 

说明
key  MySQL 实际从 possible_key 选择使用的索引。 如果为 NULL,则没有使用索引。很少的情况 下,MYSQL 会选择优化不足的索引。这种情 况下,可以在 SELECT 语句中使用 USE INDEX (indexname)来强制使用一个索引或者用 IGNORE INDEX(indexname)来强制 MYSQL 忽略索引

 

说明
key_len  使用的索引的长度。在不损失精确性的情况 下,长度越短越好。

 

说明
ref  显示索引的哪一列被使用了

 

说明
rows  MYSQL 认为必须检查的用来返回请求数据的行数

 

说明
rows  MYSQL 认为必须检查的用来返回请求数据的行数

 

extra 中出现以下 2 项意味着 MYSQL 根本不能使用索引,效率会受到重大影响。应尽可能对此进行优化。 

extra 项 说明
Using filesort  表示 MySQL 会对结果使用一个外部索引排序,而不是从表里按索引次序读到相关内容。可能在内存或者磁盘上进行排序。MySQL 中无法利用索引完成的排序操作称为“文件排序”
Using temporary  表示 MySQL 在对查询结果排序时使用临时表。常见于排序 order by 和分组查询 group by。

下面来举一个例子来说明下 explain 的用法。 
先来一张表:

复制代码代码如下:

CREATE TABLE IF NOT EXISTS `article` (`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`author_id` int(10) unsigned NOT NULL,
`category_id` int(10) unsigned NOT NULL,
`views` int(10) unsigned NOT NULL,
`comments` int(10) unsigned NOT NULL,
`title` varbinary(255) NOT NULL,
`content` text NOT NULL,
PRIMARY KEY (`id`)
);


再插几条数据:

复制代码代码如下:

INSERT INTO `article`
(`author_id`, `category_id`, `views`, `comments`, `title`, `content`) VALUES
(1, 1, 1, 1, '1', '1'),
(2, 2, 2, 2, '2', '2'),
(1, 1, 3, 3, '3', '3');


需求:
查询 category_id 为 1 且 comments 大于 1 的情况下,views 最多的 article_id。 
先查查试试看:

复制代码代码如下:

EXPLAIN
SELECT author_id
FROM `article`
WHERE category_id = 1 AND comments > 1
ORDER BY views DESC
LIMIT 1\G


看看部分输出结果: 

复制代码代码如下:

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: article
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 3
        Extra: Using where; Using filesort
1 row in set (0.00 sec)


很显然,type 是 ALL,即最坏的情况。Extra 里还出现了 Using filesort,也是最坏的情况。优化是必须的。

 

嗯,那么最简单的解决方案就是加索引了。好,我们来试一试。查询的条件里即 where 之后共使用了 category_id,comments,views 三个字段。那么来一个联合索引是最简单的了。

复制代码代码如下:

ALTER TABLE `article` ADD INDEX x ( `category_id` , `comments`, `views` );


结果有了一定好转,但仍然很糟糕:

复制代码代码如下:

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: article
         type: range
possible_keys: x
          key: x
      key_len: 8
          ref: NULL
         rows: 1
        Extra: Using where; Using filesort
1 row in set (0.00 sec)


type 变成了 range,这是可以忍受的。但是 extra 里使用 Using filesort 仍是无法接受的。但是我们已经建立了索引,为啥没用呢?这是因为按照 BTree 索引的工作原理,先排序 category_id,如果遇到相同的 category_id 则再排序 comments,如果遇到相同的 comments 则再排序 views。当 comments 字段在联合索引里处于中间位置时,因comments > 1 条件是一个范围值(所谓 range),MySQL 无法利用索引再对后面的 views 部分进行检索,即 range 类型查询字段后面的索引无效。
那么我们需要抛弃 comments,删除旧索引:

复制代码代码如下:

 DROP INDEX x ON article;


然后建立新索引:

复制代码代码如下:

ALTER TABLE `article` ADD INDEX y ( `category_id` , `views` ) ;


接着再运行查询:

复制代码代码如下:

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: article
         type: ref
possible_keys: y
          key: y
      key_len: 4
          ref: const
         rows: 1
        Extra: Using where
1 row in set (0.00 sec)


可以看到,type 变为了 ref,Extra 中的 Using filesort 也消失了,结果非常理想。
再来看一个多表查询的例子。
首先定义 3个表 class 和 room。

复制代码代码如下:

CREATE TABLE IF NOT EXISTS `class` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`card` int(10) unsigned NOT NULL,
PRIMARY KEY (`id`)
);
CREATE TABLE IF NOT EXISTS `book` (
`bookid` int(10) unsigned NOT NULL AUTO_INCREMENT,
`card` int(10) unsigned NOT NULL,
PRIMARY KEY (`bookid`)
);
CREATE TABLE IF NOT EXISTS `phone` (
`phoneid` int(10) unsigned NOT NULL AUTO_INCREMENT,
`card` int(10) unsigned NOT NULL,
PRIMARY KEY (`phoneid`)
) engine = innodb;


然后再分别插入大量数据。插入数据的php脚本: 

复制代码代码如下:

<?php
$link = mysql_connect("localhost","root","870516");
mysql_select_db("test",$link);
for($i=0;$i<10000;$i++)
{
    $j   = rand(1,20);
    $sql = " insert into class(card) values({$j})";
    mysql_query($sql);
}
for($i=0;$i<10000;$i++)
{
    $j   = rand(1,20);
    $sql = " insert into book(card) values({$j})";
    mysql_query($sql);
}
for($i=0;$i<10000;$i++)
{
    $j   = rand(1,20);
    $sql = " insert into phone(card) values({$j})";
    mysql_query($sql);
}
mysql_query("COMMIT");
?>


然后来看一个左连接查询: 

复制代码代码如下:

explain select * from class left join book on class.card = book.card\G


分析结果是:

复制代码代码如下:

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
2 rows in set (0.00 sec)


显然第二个 ALL 是需要我们进行优化的。
建立个索引试试看:

复制代码代码如下:

ALTER TABLE `book` ADD INDEX y ( `card`);

 

复制代码代码如下:

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ref
possible_keys: y
          key: y
      key_len: 4
          ref: test.class.card
         rows: 1000
        Extra: 
2 rows in set (0.00 sec)


可以看到第二行的 type 变为了 ref,rows 也变成了 1741*18,优化比较明显。这是由左连接特性决定的。LEFT JOIN 条件用于确定如何从右表搜索行,左边一定都有,所以右边是我们的关键点,一定需要建立索引。
删除旧索引:

复制代码代码如下:

DROP INDEX y ON book;


建立新索引。

复制代码代码如下:

ALTER TABLE `class` ADD INDEX x ( `card`);


结果

复制代码代码如下:

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
2 rows in set (0.00 sec)


基本无变化。
       然后来看一个右连接查询:

复制代码代码如下:

explain select * from class right join book on class.card = book.card;


分析结果是:

复制代码代码如下:

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ref
possible_keys: x
          key: x
      key_len: 4
          ref: test.book.card
         rows: 1000
        Extra: 
2 rows in set (0.00 sec)


优化较明显。这是因为 RIGHT JOIN 条件用于确定如何从左表搜索行,右边一定都有,所以左边是我们的关键点,一定需要建立索引。
删除旧索引:

复制代码代码如下:

DROP INDEX x ON class;


建立新索引。

复制代码代码如下:

ALTER TABLE `book` ADD INDEX y ( `card`);


结果

复制代码代码如下:

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
2 rows in set (0.00 sec)


基本无变化。 

 

最后来看看 inner join 的情况:

复制代码代码如下:

explain select * from class inner join book on class.card = book.card;


结果: 

复制代码代码如下:

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ref
possible_keys: x
          key: x
      key_len: 4
          ref: test.book.card
         rows: 1000
        Extra: 
2 rows in set (0.00 sec)


删除旧索引: 

复制代码代码如下:

DROP INDEX y ON book;


结果

复制代码代码如下:

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
2 rows in set (0.00 sec)


建立新索引。

复制代码代码如下:

ALTER TABLE `class` ADD INDEX x ( `card`);


结果

复制代码代码如下:

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
2 rows in set (0.00 sec)


综上所述,inner join 和 left join 差不多,都需要优化右表。而 right join 需要优化左表。

 

我们再来看看三表查询的例子

添加一个新索引:

复制代码代码如下:

ALTER TABLE `phone` ADD INDEX z ( `card`);
ALTER TABLE `book` ADD INDEX y ( `card`);

 

复制代码代码如下:

explain select * from class left join book on class.card=book.card left join phone on book.card = phone.card;

 

复制代码代码如下:

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ref
possible_keys: y
          key: y
      key_len: 4
          ref: test.class.card
         rows: 1000
        Extra: 
*************************** 3. row ***************************
           id: 1
  select_type: SIMPLE
        table: phone
         type: ref
possible_keys: z
          key: z
      key_len: 4
          ref: test.book.card
         rows: 260
        Extra: Using index
3 rows in set (0.00 sec)


后 2 行的 type 都是 ref 且总 rows 优化很好,效果不错。

MySql 中的 explain 语法可以帮助我们改写查询,优化表的结构和索引的设置,从而最大地提高查询效率。当然,在大规模数据量时,索引的建立和维护的代价也是很高的,往往需要较长的时间和较大的空间,如果在不同的列组合上建立索引,空间的开销会更大。因此索引最好设置在需要经常查询的字段中。

分享到:
评论

相关推荐

    MySQL查询优化之explain的深入解析

    通过深入解析EXPLAIN的输出,我们可以有针对性地改进SQL语句,例如避免在索引列上使用NOT操作符,因为这可能导致无法使用索引;尽可能使用索引覆盖查询,即查询的列都在索引中,这样可以避免回表操作,提高查询速度...

    MySQL 性能优化神器 Explain 使用分析

    MySQL 性能优化 Explain ,MySQL 性能优化 ExplainMySQL 性能优化 ExplainMySQL 性能优化 ExplainMySQL 性能优化 ExplainMySQL 性能优化 ExplainMySQL 性能优化 ExplainMySQL 性能优化 Explain

    深入解析:使用EXPLAIN优化MySQL查询之旅

    ### 深入解析:使用 EXPLAIN 优化 MySQL 查询之旅 #### 一、MySQL简介与特点 MySQL作为一款流行的开源关系型数据库管理系统(RDBMS),因其强大的功能与灵活性,在Web应用程序开发领域占据着举足轻重的地位。它不仅...

    Mysql Explain详细解析

    MySQL 的 `EXPLAIN` 命令是一个非常强大的工具,它可以帮助我们理解 MySQL 如何执行查询,并为我们提供优化查询性能的重要信息。通过 `EXPLAIN`,我们可以了解查询计划、表的连接顺序以及所使用的索引等细节。 ####...

    2.mysql查询性能优化1

    MySQL 查询优化可以从多方面入手,包括优化查询语句、优化索引、优化数据库结构等。 6.2 查询优化技术 MySQL 查询优化技术有很多,包括使用索引、优化查询语句、使用连接优化、使用缓存优化等。 6.2.1 使用索引 ...

    mysql查询优化之索引优化

    本文将深入探讨“mysql查询优化之索引优化”这一主题。 首先,了解索引的基本概念至关重要。索引是数据库为了快速查找数据而创建的一种数据结构,类似于书籍的目录,它使得数据检索更快,减少了全表扫描的可能性。...

    MySQL性能优化秘籍:EXPLAIN深度解析与应用实战

    MySQL开发通常指的是使用MySQL数据库进行的软件开发活动。MySQL是一个流行的开源关系型数据库管理系统(RDBMS),广泛用于Web开发和...6. **性能优化**:开发者需要了解如何优化查询性能,包括使用索引、优化SQL语句等

    sql查询优化(提高MySQL数据库查询效率的几个技巧)

    * 优化 SQL 语句:使用 EXPLAIN 语句来分析 SQL 语句的执行计划,优化查询语句。 * 使用存储过程:使用存储过程可以将频繁查询的操作封装起来,提高查询效率。 * 优化数据库结构:优化数据库结构,例如,使用合适的...

    mysql性能优化与架构设计

    MySQL性能优化与架构设计是数据库管理员和开发人员必须掌握的关键技能之一。MySQL作为一个广泛使用的开源关系型数据库管理系统,其性能优化对于提升应用的整体性能至关重要。本资料主要关注MySQL的架构理解、性能...

    Mysql Explain

    ### MySQL Explain 深度解析 #### 一、Explain 的意义 在数据库查询优化领域,`EXPLAIN` 是一个非常强大的工具,它能够帮助我们分析 `SELECT` 语句的执行过程,揭示出查询效率低下的原因。通过 `EXPLAIN` 的分析...

    MySQL性能优化神器, Explain总结使用最详细教程

    通过Explain,我们可以了解表的扫描方式、连接类型、使用的索引等信息,为优化查询提供依据。 二、Explain字段解析 1. id:标识符,表示查询中的子句顺序。同一id的行表示并行执行,id值越大,执行优先级越高。 2...

    从Mysql-EXPLAIN探寻数据库查询优化

    通过对MySQL中的`EXPLAIN`命令及其输出结果的深入理解,我们可以有效地诊断并优化查询性能。无论是对于数据库管理员还是开发人员来说,掌握这一技能都是非常重要的。希望本文能够帮助大家更好地理解和利用`EXPLAIN`...

    Mysql Explain 语法详细解析

    - **possible_keys**: idx_department, idx_salary,MySQL 认为可以使用这两个索引来优化查询。 - **key**: idx_department,实际上使用了 `idx_department` 索引来执行查询。 - **key_len**: 119,表示使用的索引...

    MySQL查询优化系列讲座.rar

    接着,"MySQL查询优化系列讲座之数据类型与效率"强调了正确选择数据类型对于优化查询的重要性。不同数据类型占用的空间、存储效率以及参与计算的方式都不同,选择合适的数据类型可以减少存储需求,提高查询速度。这...

    mysqlexplain.ppt

    它能帮助我们理解MySQL如何处理查询,从而优化查询性能。以下是对EXPLAIN命令及其相关知识点的详细解释。 1. **EXPLAIN调用方式**: - **基础形式**:`EXPLAIN SELECT ...` - **EXTENDED形式**:`EXPLAIN ...

Global site tag (gtag.js) - Google Analytics