epoll - I/O event notification facility
在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。
相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linux/posix_types.h头文件有这样的声明:
#define __FD_SETSIZE 1024
表示select最多同时监听1024个fd,当然,可以通过修改头文件再重编译内核来扩大这个数目,但这似乎并不治本。
epoll的接口非常简单,一共就三个函数:
1. int epoll_create(int size);
创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大。这个参数不同于select()中的第一个参数,给出最大监听的fd+1的值。需要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。
2. int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
epoll的事件注册函数,它不同与select()是在监听事件时告诉内核要监听什么类型的事件,而是在这里先注册要监听的事件类型。第一个参数是epoll_create()的返回值,第二个参数表示动作,用三个宏来表示:
EPOLL_CTL_ADD:注册新的fd到epfd中;
EPOLL_CTL_MOD:修改已经注册的fd的监听事件;
EPOLL_CTL_DEL:从epfd中删除一个fd;
第三个参数是需要监听的fd,第四个参数是告诉内核需要监听什么事,struct epoll_event结构如下:
typedef union epoll_data {
void *ptr;
int fd;
__uint32_t u32;
__uint64_t u64;
} epoll_data_t;
struct epoll_event {
__uint32_t events; /* Epoll events */
epoll_data_t data; /* User data variable */
};
events可以是以下几个宏的集合:
EPOLLIN :表示对应的文件描述符可以读(包括对端SOCKET正常关闭);
EPOLLOUT:表示对应的文件描述符可以写;
EPOLLPRI:表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);
EPOLLERR:表示对应的文件描述符发生错误;
EPOLLHUP:表示对应的文件描述符被挂断;
EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。
EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里
3. int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
等待事件的产生,类似于select()调用。参数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个 maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。该函数返回需要处理的事件数目,如返回0表示已超时。
4、关于ET、LT两种工作模式:
可以得出这样的结论:
ET模式仅当状态发生变化的时候才获得通知,这里所谓的状态的变化并不包括缓冲区中还有未处理的数据,也就是说,如果要采用ET模式,需要一直read/write直到出错为止,很多人反映为什么采用ET模式只接收了一部分数据就再也得不到通知了,大多因为这样;而LT模式是只要有数据没有处理就会一直通知下去的.
那么究竟如何来使用epoll呢?其实非常简单。
通过在包含一个头文件#include <sys/epoll.h> 以及几个简单的API将可以大大的提高你的网络服务器的支持人数。
首先通过create_epoll(int maxfds)来创建一个epoll的句柄,其中maxfds为你epoll所支持的最大句柄数。这个函数会返回一个新的epoll句柄,之后的所有操作将通过这个句柄来进行操作。在用完之后,记得用close()来关闭这个创建出来的epoll句柄。
之后在你的网络主循环里面,每一帧的调用epoll_wait(int epfd, epoll_event events, int max events, int timeout)来查询所有的网络接口,看哪一个可以读,哪一个可以写了。基本的语法为:
nfds = epoll_wait(kdpfd, events, maxevents, -1);
其中kdpfd为用epoll_create创建之后的句柄,events是一个epoll_event*的指针,当epoll_wait这个函数操作成功之后,epoll_events里面将储存所有的读写事件。max_events是当前需要监听的所有socket句柄数。最后一个timeout是 epoll_wait的超时,为0的时候表示马上返回,为-1的时候表示一直等下去,直到有事件范围,为任意正整数的时候表示等这么长的时间,如果一直没有事件,则范围。一般如果网络主循环是单独的线程的话,可以用-1来等,这样可以保证一些效率,如果是和主逻辑在同一个线程的话,则可以用0来保证主循环的效率。
epoll_wait范围之后应该是一个循环,遍利所有的事件。
几乎所有的epoll程序都使用下面的框架:
for( ; ; ) { nfds = epoll_wait(epfd,events,20,500); for(i=0;i<nfds;++i) { if(events[i].data.fd==listenfd) //有新的连接 { connfd = accept(listenfd,(sockaddr *)&clientaddr, &clilen); //accept这个连接 ev.data.fd=connfd; ev.events=EPOLLIN|EPOLLET; epoll_ctl(epfd,EPOLL_CTL_ADD,connfd,&ev); //将新的fd添加到epoll的监听队列中 } else if( events[i].events&EPOLLIN ) //接收到数据,读socket { n = read(sockfd, line, MAXLINE)) < 0 //读 ev.data.ptr = md; //md为自定义类型,添加数据 ev.events=EPOLLOUT|EPOLLET; epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);//修改标识符,等待下一个循环时发送数据,异步处理的精髓 } else if(events[i].events&EPOLLOUT) //有数据待发送,写socket { struct myepoll_data* md = (myepoll_data*)events[i].data.ptr; //取数据 sockfd = md->fd; send( sockfd, md->ptr, strlen((char*)md->ptr), 0 ); //发送数据 ev.data.fd=sockfd; ev.events=EPOLLIN|EPOLLET; epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev); //修改标识符,等待下一个循环时接收数据 } else { //其他的处理 } } }
下面给出一个完整的服务器端例子:
#include <iostream> #include <sys/socket.h> #include <sys/epoll.h> #include <netinet/in.h> #include <arpa/inet.h> #include <fcntl.h> #include <unistd.h> #include <stdio.h> #include <errno.h> using namespace std; #define MAXLINE 5 #define OPEN_MAX 100 #define LISTENQ 20 #define SERV_PORT 5000 #define INFTIM 1000 void setnonblocking(int sock) { int opts; opts=fcntl(sock,F_GETFL); if(opts<0) { perror("fcntl(sock,GETFL)"); exit(1); } opts = opts|O_NONBLOCK; if(fcntl(sock,F_SETFL,opts)<0) { perror("fcntl(sock,SETFL,opts)"); exit(1); } } int main(int argc, char* argv[]) { int i, maxi, listenfd, connfd, sockfd,epfd,nfds, portnumber; ssize_t n; char line[MAXLINE]; socklen_t clilen; if ( 2 == argc ) { if( (portnumber = atoi(argv[1])) < 0 ) { fprintf(stderr,"Usage:%s portnumber\a\n",argv[0]); return 1; } } else { fprintf(stderr,"Usage:%s portnumber\a\n",argv[0]); return 1; } //声明epoll_event结构体的变量,ev用于注册事件,数组用于回传要处理的事件 struct epoll_event ev,events[20]; //生成用于处理accept的epoll专用的文件描述符 epfd=epoll_create(256); struct sockaddr_in clientaddr; struct sockaddr_in serveraddr; listenfd = socket(AF_INET, SOCK_STREAM, 0); //把socket设置为非阻塞方式 //setnonblocking(listenfd); //设置与要处理的事件相关的文件描述符 ev.data.fd=listenfd; //设置要处理的事件类型 ev.events=EPOLLIN|EPOLLET; //ev.events=EPOLLIN; //注册epoll事件 epoll_ctl(epfd,EPOLL_CTL_ADD,listenfd,&ev); bzero(&serveraddr, sizeof(serveraddr)); serveraddr.sin_family = AF_INET; char *local_addr="127.0.0.1"; inet_aton(local_addr,&(serveraddr.sin_addr));//htons(portnumber); serveraddr.sin_port=htons(portnumber); bind(listenfd,(sockaddr *)&serveraddr, sizeof(serveraddr)); listen(listenfd, LISTENQ); maxi = 0; for ( ; ; ) { //等待epoll事件的发生 nfds=epoll_wait(epfd,events,20,500); //处理所发生的所有事件 for(i=0;i<nfds;++i) { if(events[i].data.fd==listenfd)//如果新监测到一个SOCKET用户连接到了绑定的SOCKET端口,建立新的连接。 { connfd = accept(listenfd,(sockaddr *)&clientaddr, &clilen); if(connfd<0){ perror("connfd<0"); exit(1); } //setnonblocking(connfd); char *str = inet_ntoa(clientaddr.sin_addr); cout << "accapt a connection from " << str << endl; //设置用于读操作的文件描述符 ev.data.fd=connfd; //设置用于注测的读操作事件 ev.events=EPOLLIN|EPOLLET; //ev.events=EPOLLIN; //注册ev epoll_ctl(epfd,EPOLL_CTL_ADD,connfd,&ev); } else if(events[i].events&EPOLLIN)//如果是已经连接的用户,并且收到数据,那么进行读入。 { cout << "EPOLLIN" << endl; if ( (sockfd = events[i].data.fd) < 0) continue; if ( (n = read(sockfd, line, MAXLINE)) < 0) { if (errno == ECONNRESET) { close(sockfd); events[i].data.fd = -1; } else std::cout<<"readline error"<<std::endl; } else if (n == 0) { close(sockfd); events[i].data.fd = -1; } line[n] = '\0'; cout << "read " << line << endl; //设置用于写操作的文件描述符 ev.data.fd=sockfd; //设置用于注测的写操作事件 ev.events=EPOLLOUT|EPOLLET; //修改sockfd上要处理的事件为EPOLLOUT //epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev); } else if(events[i].events&EPOLLOUT) // 如果有数据发送 { sockfd = events[i].data.fd; write(sockfd, line, n); //设置用于读操作的文件描述符 ev.data.fd=sockfd; //设置用于注测的读操作事件 ev.events=EPOLLIN|EPOLLET; //修改sockfd上要处理的事件为EPOLIN epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev); } } } return 0; }
相关推荐
【epoll 使用详解】 在 Linux 网络编程中,epoll 是一种高效、可扩展的 I/O 事件通知机制,用于替代传统的 select 和 poll。epoll 的主要优点在于其性能不受监听文件描述符(fd)数量的影响,这是因为epoll 采用了...
### Epoll模型详解 #### 一、Epoll概述 在Linux网络编程中,早期广泛使用的事件触发机制主要是基于`select`。然而随着技术的发展以及应用需求的提高,`select`逐渐暴露出了一些明显的局限性,比如它对于大量文件...
Epoll使用的是基于“红黑树”的数据结构来存储fd,因此在添加、修改或删除fd时的时间复杂度为O(logn),大大提高了性能。 Epoll提供了三个主要的系统调用: 1. `int epoll_create(int size);`:创建一个Epoll实例,...
本资源提供的"Linux C++ epoll使用范例"包含了客户端、服务端以及一个测试程序,旨在帮助开发者更好地理解和运用`epoll`。 一、epoll介绍 `epoll`是Linux内核为解决旧有的`select`和`poll`方法在处理大量文件描述符...
**EPOLL模型详解** Linux 2.6内核引入了EPOLL模型,作为解决I/O多路复用问题的一种高效机制,特别是在处理大量socket描述符(FD)时。EPOLL对比传统的select和poll模型,具有以下显著优点: 1. **不受FD数量限制**...
《Epoll模型详解》 在Linux的网络编程领域,Epoll模型是替代传统select模型的一种高效解决方案。Epoll的优势在于其高效性和可扩展性,它避免了随着监听文件描述符(fd)数量增加而导致的性能下降问题。传统的select...
linux epoll 概念、优缺点、io复用 、脑图、Linux下的服务器模型:
linux c开发 epoll详解 异步事件处理 linux c开发 epoll详解 异步事件处理 linux c开发 epoll详解 异步事件处理 linux c开发 epoll详解 异步事件处理 linux c开发 epoll详解 异步事件处理
linux socket tcp大并发 epoll使用教程 有关epoll的一切
本篇文章将详细探讨如何使用Golang语言在Linux、MacOS和Windows平台上实现`epoll`。 首先,我们来理解`epoll`的工作原理。`epoll`基于`IO多路复用`技术,它提供了一个接口,允许程序注册一组文件描述符(如套接字)...
以下是epoll使用的一些关键点: - **EPOLLONESHOT**:此标志可以在添加文件描述符到epoll实例时设置,表示在事件发生并被处理后,该描述符自动从epoll实例中移除,需要再次添加才能继续监听。 - **EPOLLET**:边缘...
默认情况下,epoll使用LT模式,这意味着只要文件描述符处于就绪状态,每次epoll_wait都会报告该事件,直到应用处理完。而ET模式下,epoll只会在事件状态改变时报告一次,即使在事件处理过程中,文件描述符仍然就绪,...
【epoll模型详解】 在Linux网络编程中,epoll机制是一种高效的I/O事件通知机制,尤其在处理大量并发连接时,其性能优势显著。epoll是Linux内核为解决传统select和poll机制在高并发场景下性能下降的问题而设计的。...
Epoll通过`epoll_create()`创建一个Epoll实例,然后使用`epoll_ctl()`将感兴趣的文件描述符添加到Epoll实例中,并设置相应的事件类型。接着,通过`epoll_wait()`函数阻塞等待,当有事件发生时,`epoll_wait()`会返回...
epoll 使用方法 epoll 是 Linux 操作系统中的一个多路复用 I/O 机制,能够同时监控多个文件描述符的变化,高效地处理网络请求。下面详细介绍 epoll 的使用方法。 epoll 的工作模式 epoll 有两种工作方式:LT ...
Windows完成端口介绍 Linux EPOLL介绍 同步I/O与异步I/O 说起完成端口,它的实现机制其实是重叠I/O实现异步I/O操作,下面就结合同步I/O来解释下什么是异步I/O
**epoll详解:** epoll是Linux内核提供的I/O多路复用技术,用于替代传统的select和poll。epoll的优点在于它可以处理大量并发连接,并且具有更低的系统开销和更高的效率。epoll的工作原理包括以下几点: 1. **事件...
在Linux系统中,当面临需要同时管理大量网络连接或文件描述符时,`select`、`poll`和`epoll`是三种常见的I/O多路复用技术,它们允许程序在一个单独的线程中等待多个文件描述符的事件,提高了程序的效率和并发能力。...