`
xiaobian
  • 浏览: 588510 次
  • 来自: 北京
社区版块
存档分类
最新评论

HBase技术介绍

阅读更多

From:http://www.searchtb.com/2011/01/understanding-hbase.html

HBase简介

HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。

HBase是Google Bigtable的开源实现,类似Google Bigtable利用GFS作为其文件存储系统,HBase利用Hadoop HDFS作为其文件存储系统;Google运行MapReduce来处理Bigtable中的海量数据,HBase同样利用Hadoop MapReduce来处理HBase中的海量数据;Google Bigtable利用 Chubby作为协同服务,HBase利用Zookeeper作为对应。

上图描述了Hadoop EcoSystem中的各层系统,其中HBase位于结构化存储层,Hadoop HDFS为HBase提供了高可靠性的底层存储支持,Hadoop MapReduce为HBase提供了高性能的计算能力,Zookeeper为HBase提供了稳定服务和failover机制。

此外,Pig和Hive还为HBase提供了高层语言支持,使得在HBase上进行数据统计处理变的非常简单。 Sqoop则为HBase提供了方便的RDBMS数据导入功能,使得传统数据库数据向HBase中迁移变的非常方便。

HBase访问接口

1.       Native Java API,最常规和高效的访问方式,适合Hadoop MapReduce Job并行批处理HBase表数据

2.       HBase Shell,HBase的命令行工具,最简单的接口,适合HBase管理使用

3.       Thrift Gateway,利用Thrift序列化技术,支持C++,PHP,Python等多种语言,适合其他异构系统在线访问HBase表数据

4.       REST Gateway,支持REST 风格的Http API访问HBase, 解除了语言限制

5.       Pig,可以使用Pig Latin流式编程语言来操作HBase中的数据,和Hive类似,本质最终也是编译成MapReduce Job来处理HBase表数据,适合做数据统计

6.       Hive,当前Hive的Release版本尚没有加入对HBase的支持,但在下一个版本Hive 0.7.0中将会支持HBase,可以使用类似SQL语言来访问HBase

HBase数据模型

Table & Column Family

Row Key Timestamp Column Family
URI Parser
r1 t3 url=http://www.taobao.com title=天天特价
t2 host=taobao.com  
t1    
r2 t5 url=http://www.alibaba.com content=每天…
t4 host=alibaba.com  

Ø  Row Key: 行键,Table的主键,Table中的记录按照Row Key排序

Ø  Timestamp: 时间戳,每次数据操作对应的时间戳,可以看作是数据的version number

Ø  Column Family:列簇,Table在水平方向有一个或者多个Column Family组成,一个Column Family中可以由任意多个Column组成,即Column Family支持动态扩展,无需预先定义Column的数量以及类型,所有Column均以二进制格式存储,用户需要自行进行类型转换。

Table & Region

当Table随着记录数不断增加而变大后,会逐渐分裂成多份splits,成为regions,一个region由[startkey,endkey)表示,不同的region会被Master分配给相应的RegionServer进行管理:

-ROOT- && .META. Table

HBase中有两张特殊的Table,-ROOT-和.META.

Ø  .META.:记录了用户表的Region信息,.META.可以有多个regoin

Ø  -ROOT-:记录了.META.表的Region信息,-ROOT-只有一个region

Ø  Zookeeper中记录了-ROOT-表的location

Client访问用户数据之前需要首先访问zookeeper,然后访问-ROOT-表,接着访问.META.表,最后才能找到用户数据的位置去访问,中间需要多次网络操作,不过client端会做cache缓存。

MapReduce on HBase

在HBase系统上运行批处理运算,最方便和实用的模型依然是MapReduce,如下图:

HBase Table和Region的关系,比较类似HDFS File和Block的关系,HBase提供了配套的TableInputFormat和TableOutputFormat API,可以方便的将HBase Table作为Hadoop MapReduce的Source和Sink,对于MapReduce Job应用开发人员来说,基本不需要关注HBase系统自身的细节。

HBase系统架构

Client

HBase Client使用HBase的RPC机制与HMaster和HRegionServer进行通信,对于管理类操作,Client与HMaster进行RPC;对于数据读写类操作,Client与HRegionServer进行RPC

Zookeeper

Zookeeper Quorum中除了存储了-ROOT-表的地址和HMaster的地址,HRegionServer也会把自己以Ephemeral方式注册到Zookeeper中,使得HMaster可以随时感知到各个HRegionServer的健康状态。此外,Zookeeper也避免了HMaster的单点问题,见下文描述

HMaster

HMaster没有单点问题,HBase中可以启动多个HMaster,通过Zookeeper的Master Election机制保证总有一个Master运行,HMaster在功能上主要负责Table和Region的管理工作:

1.       管理用户对Table的增、删、改、查操作

2.       管理HRegionServer的负载均衡,调整Region分布

3.       在Region Split后,负责新Region的分配

4.       在HRegionServer停机后,负责失效HRegionServer 上的Regions迁移

HRegionServer

HRegionServer主要负责响应用户I/O请求,向HDFS文件系统中读写数据,是HBase中最核心的模块。

HRegionServer内部管理了一系列HRegion对象,每个HRegion对应了Table中的一个Region,HRegion中由多个HStore组成。每个HStore对应了Table中的一个Column Family的存储,可以看出每个Column Family其实就是一个集中的存储单元,因此最好将具备共同IO特性的column放在一个Column Family中,这样最高效。

HStore存储是HBase存储的核心了,其中由两部分组成,一部分是MemStore,一部分是StoreFiles。MemStore是Sorted Memory Buffer,用户写入的数据首先会放入MemStore,当MemStore满了以后会Flush成一个StoreFile(底层实现是HFile),当StoreFile文件数量增长到一定阈值,会触发Compact合并操作,将多个StoreFiles合并成一个StoreFile,合并过程中会进行版本合并和数据删除,因此可以看出HBase其实只有增加数据,所有的更新和删除操作都是在后续的compact过程中进行的,这使得用户的写操作只要进入内存中就可以立即返回,保证了HBase I/O的高性能。当StoreFiles Compact后,会逐步形成越来越大的StoreFile,当单个StoreFile大小超过一定阈值后,会触发Split操作,同时把当前Region Split成2个Region,父Region会下线,新Split出的2个孩子Region会被HMaster分配到相应的HRegionServer上,使得原先1个Region的压力得以分流到2个Region上。下图描述了Compaction和Split的过程:

在理解了上述HStore的基本原理后,还必须了解一下HLog的功能,因为上述的HStore在系统正常工作的前提下是没有问题的,但是在分布式系统环境中,无法避免系统出错或者宕机,因此一旦HRegionServer意外退出,MemStore中的内存数据将会丢失,这就需要引入HLog了。每个HRegionServer中都有一个HLog对象,HLog是一个实现Write Ahead Log的类,在每次用户操作写入MemStore的同时,也会写一份数据到HLog文件中(HLog文件格式见后续),HLog文件定期会滚动出新的,并删除旧的文件(已持久化到StoreFile中的数据)。当HRegionServer意外终止后,HMaster会通过Zookeeper感知到,HMaster首先会处理遗留的 HLog文件,将其中不同Region的Log数据进行拆分,分别放到相应region的目录下,然后再将失效的region重新分配,领取 到这些region的HRegionServer在Load Region的过程中,会发现有历史HLog需要处理,因此会Replay HLog中的数据到MemStore中,然后flush到StoreFiles,完成数据恢复。

HBase存储格式

HBase中的所有数据文件都存储在Hadoop HDFS文件系统上,主要包括上述提出的两种文件类型:

1.       HFile, HBase中KeyValue数据的存储格式,HFile是Hadoop的二进制格式文件,实际上StoreFile就是对HFile做了轻量级包装,即StoreFile底层就是HFile

2.       HLog File,HBase中WAL(Write Ahead Log) 的存储格式,物理上是Hadoop的Sequence File

HFile

下图是HFile的存储格式:

首先HFile文件是不定长的,长度固定的只有其中的两块:Trailer和FileInfo。正如图中所示的,Trailer中有指针指向其他数据块的起始点。File Info中记录了文件的一些Meta信息,例如:AVG_KEY_LEN, AVG_VALUE_LEN, LAST_KEY, COMPARATOR, MAX_SEQ_ID_KEY等。Data Index和Meta Index块记录了每个Data块和Meta块的起始点。

Data Block是HBase I/O的基本单元,为了提高效率,HRegionServer中有基于LRU的Block Cache机制。每个Data块的大小可以在创建一个Table的时候通过参数指定,大号的Block有利于顺序Scan,小号Block利于随机查询。每个Data块除了开头的Magic以外就是一个个KeyValue对拼接而成, Magic内容就是一些随机数字,目的是防止数据损坏。后面会详细介绍每个KeyValue对的内部构造。

HFile里面的每个KeyValue对就是一个简单的byte数组。但是这个byte数组里面包含了很多项,并且有固定的结构。我们来看看里面的具体结构:

开始是两个固定长度的数值,分别表示Key的长度和Value的长度。紧接着是Key,开始是固定长度的数值,表示RowKey的长度,紧接着是RowKey,然后是固定长度的数值,表示Family的长度,然后是Family,接着是Qualifier,然后是两个固定长度的数值,表示Time Stamp和Key Type(Put/Delete)。Value部分没有这么复杂的结构,就是纯粹的二进制数据了。

HLogFile

上图中示意了HLog文件的结构,其实HLog文件就是一个普通的Hadoop Sequence File,Sequence File 的Key是HLogKey对象,HLogKey中记录了写入数据的归属信息,除了table和region名字外,同时还包括 sequence number和timestamp,timestamp是“写入时间”,sequence number的起始值为0,或者是最近一次存入文件系统中sequence number。

HLog Sequece File的Value是HBase的KeyValue对象,即对应HFile中的KeyValue,可参见上文描述。

结束

本文对HBase技术在功能和设计上进行了大致的介绍,由于篇幅有限,本文没有过多深入地描述HBase的一些细节技术。目前一淘的存储系统就是基于HBase技术搭建的,后续将介绍“一淘分布式存储系统”,通过实际案例来更多的介绍HBase应用。

分享到:
评论

相关推荐

    (转)HBase技术介绍

    【HBase技术介绍】 HBase,全称是Apache HBase,是一个分布式的、面向列的开源数据库,基于Google的Bigtable设计思想构建于Hadoop文件系统(HDFS)之上。它是Apache软件基金会Hadoop项目的一部分,专为处理大规模...

    HBase技术介绍简介 NOSQL数据库 入门

    ### HBase技术介绍与NoSQL数据库入门 #### HBase概述 HBase,全称为Hadoop Database,是一款基于Apache Hadoop生态系统的开源、分布式、面向列的NoSQL数据库系统。它被设计用于提供高可靠性、高性能的数据存储解决...

    HBase技术介绍.docx

    ### HBase技术详解 #### 一、HBase概述 **HBase**,全称为Hadoop Database,是一款构建在Hadoop之上、面向列的分布式数据库系统。它具备高可靠性、高性能和可扩展性等特点,能够在成本相对低廉的硬件设备上构建大...

    大数据技术基础培训-HBase技术介绍.pptx

    【大数据技术基础培训-HBase技术介绍】 HBase是一种开源的分布式NoSQL数据库,设计用于处理大规模数据集。它建立在Hadoop文件系统(HDFS)之上,为大数据环境提供了高效、可扩展的数据存储和访问解决方案。HBase的...

    Hbase技术介绍

    ### HBase技术深入解析 #### 引言 HBase,作为大数据领域中一款重要的分布式数据库系统,基于Hadoop生态系统构建,旨在提供高可靠、高性能的数据存储与查询服务。本文将全面解析HBase的核心概念、技术架构及应用...

    Hadoop之Hbase从入门到精通.doc

    一、HBase技术介绍 HBase是Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。HBase利用Hadoop HDFS作为其文件存储系统,并利用Hadoop MapReduce来处理HBase中的海量数据。HBase还利用...

    Hadoop之Hbase从入门到精通

    #### HBase技术介绍与概述 HBase是一种分布式、高可靠性且高性能的列式存储系统,它基于Hadoop生态体系构建,并且能够支持大规模的数据存储需求。HBase的设计灵感来源于Google的Bigtable论文,通过模仿Bigtable的...

    2018 Apache HBase 技术实战专刊

    HBase作为一款高性能、支持无限水平扩展的在线...综上所述,2018 Apache HBase 技术实战专刊详细介绍了HBase的多个方面,包括其生态、组件、应用场景、技术细节、运维实践等,旨在为HBase爱好者提供全面的技术参考。

    Hadoop之Hbase从入门到精通 .doc

    HBase 技术介绍 ---------------- HBase 是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用 HBase 技术可在廉价 PC Server 上搭建起大规模结构化存储集群。HBase 是 Google Bigtable 的开源实现,类似...

    HBASE技术架构及应用介绍.pptx

    【HBase概述】 HBase是一种基于Google BigTable模型的开源分布式列存储系统,它是Apache Hadoop生态系统的重要组成部分,专门用于海量结构化数据的存储。HBase利用了HDFS(Hadoop Distributed File System)作为...

    Hbase从入门到精通

    #### 一、HBase技术介绍 ##### 1. HBase简介 HBase(Hadoop Database)是一种分布式列族数据库,它具有高可靠性、高性能、可伸缩性等特点,适用于搭建大规模结构化存储集群。与传统的数据库相比,HBase更加适合...

    HBase技术参考手册.docx

    《HBase技术参考手册》是深入理解这一分布式列式存储系统的宝贵资源。HBase源于Google的Bigtable论文,旨在为大规模结构化数据提供高吞吐量的随机读写能力。以下将详细介绍HBase的关键概念、特性及其在实际场景中的...

    HBASE技术架构及应用介绍.pdf

    HBase是一种分布式列存储系统,它是构建在Hadoop的分布式文件系统HDFS之上的,主要用于存储海量的结构化数据。作为Apache Hadoop生态系统的关键组成部分,HBase弥补了HDFS在实时随机读写上的不足,提供了高并发、低...

    HBase官方文档

    HBase是一个分布式的、面向列的数据库,构建在Apache Hadoop和Apache ZooKeeper之...综上所述,HBase的官方文档涵盖了从基础操作、集群配置到高级主题如性能优化和故障处理的广泛内容,这些都是掌握HBase技术的关键点。

    Hbase技术原理详解及案例分析

    第二部分,对Hbase进行基本的概述,主要介绍其中基本原理,第三部分对Hbase的技术进行详解,包括关键成员和技术优化。第四部分,通过一个小的java api案例,介绍Hbase的开发使用,详细分析hbase的应用场景和优化方式...

    hbase社区2018精选资料

    社区动态部分突出了中国HBase技术社区的重要性,这是HBase爱好者和专业人士交流技术经验、分享最佳实践的平台。社区成员积极贡献知识,共同推动HBase技术在中国的发展。 在学习HBase的过程中,理解其生态系统的多个...

Global site tag (gtag.js) - Google Analytics