Delphi中有一个线程类TThread是用来实现多线程编程的,这个绝大多数Delphi书藉都有说到,但基本上都是对TThread类的几个成员作一简单介绍,再说明一下Execute的实现和Synchronize的用法就完了。然而这并不是多线程编程的全部,我写此文的目的在于对此作一个补充。
线程本质上是进程中一段并发运行的代码。一个进程至少有一个线程,即所谓的主线程。同时还可以有多个子线程。当一个进程中用到超过一个线程时,就是所谓的“多线程”。
那么这个所谓的“一段代码”是如何定义的呢?其实就是一个函数或过程(对Delphi而言)。
如果用Windows API来创建线程的话,是通过一个叫做CreateThread的API函数来实现的,它的定义为:
HANDLE CreateThread(
LPSECURITY_ATTRIBUTES lpThreadAttributes, //线程属性(用于在NT下进行线程的安全属性设置,在9X下无效),
DWORD dwStackSize, //堆栈大小
LPTHREAD_START_ROUTINE lpStartAddress, //起始地址
LPVOID lpParameter, //参数
DWORD dwCreationFlags, //创建标志(用于设置线程创建时的状态)
LPDWORD lpThreadId 线程ID
);
最后返回线程Handle。其中的起始地址就是线程函数的入口,直至线程函数结束,线程也就结束了。
因为CreateThread参数很多,而且是Windows的API,所以在C Runtime Library里提供了一个通用的线程函数(理论上可以在任何支持线程的OS中使用):
unsigned long _beginthread(void (_USERENTRY *__start)(void *), unsigned __stksize, void *__arg);
Delphi也提供了一个相同功能的类似函数:
function BeginThread(
SecurityAttributes: Pointer;
StackSize: LongWord;
ThreadFunc: TThreadFunc;
Parameter: Pointer;
CreationFlags: LongWord;
var ThreadId: LongWord
): Integer;
这三个函数的功能是基本相同的,它们都是将线程函数中的代码放到一个独立的线程中执行。线程函数与一般函数的最大不同在于,线程函数一启动,这三个线程启动函数就返回了,主线程继续向下执行,而线程函数在一个独立的线程中执行,它要执行多久,什么时候返回,主线程是不管也不知道的。
正常情况下,线程函数返回后,线程就终止了。但也有其它方式:
Windows API:
VOID ExitThread( DWORD dwExitCode );
C Runtime Library:
void _endthread(void);
Delphi Runtime Library:
procedure EndThread(ExitCode: Integer);
为了记录一些必要的线程数据(状态/属性等),OS会为线程创建一个内部Object,如在Windows中那个Handle便是这个内部Object的Handle,所以在线程结束的时候还应该释放这个Object。
虽然说用API或RTL(Runtime Library)已经可以很方便地进行多线程编程了,但是还是需要进行较多的细节处理,为此Delphi在Classes单元中对线程作了一个较好的封装,这就是VCL的线程类:TThread
使用这个类也很简单,大多数的Delphi书籍都有说,基本用法是:先从TThread派生一个自己的线程类(因为TThread是一个抽象类,不能生成实例),然后是Override抽象方法:Execute(这就是线程函数,也就是在线程中执行的代码部分),如果需要用到可视VCL对象,还需要通过Synchronize过程进行。关于之方面的具体细节,这里不再赘述,请参考相关书籍。
本文接下来要讨论的是TThread类是如何对线程进行封装的,也就是深入研究一下TThread类的实现。因为只是真正地了解了它,才更好地使用它。
下面是DELPHI7中TThread类的声明(本文只讨论在Windows平台下的实现,所以去掉了所有有关Linux平台部分的代码):
TThread = class
private
FHandle: THandle;
FThreadID: THandle;
FCreateSuspended: Boolean;
FTerminated: Boolean;
FSuspended: Boolean;
FFreeOnTerminate: Boolean;
FFinished: Boolean;
FReturnValue: Integer;
FOnTerminate: TNotifyEvent;
FSynchronize: TSynchronizeRecord;
FFatalException: TObject;
procedure CallOnTerminate;
class procedure Synchronize(ASyncRec: PSynchronizeRecord); overload;
function GetPriority: TThreadPriority;
procedure SetPriority(Value: TThreadPriority);
procedure SetSuspended(Value: Boolean);
protected
procedure CheckThreadError(ErrCode: Integer); overload;
procedure CheckThreadError(Success: Boolean); overload;
procedure DoTerminate; virtual;
procedure Execute; virtual; abstract;
procedure Synchronize(Method: TThreadMethod); overload;
property ReturnValue: Integer read FReturnValue write FReturnValue;
property Terminated: Boolean read FTerminated;
public
constructor Create(CreateSuspended: Boolean);
destructor Destroy; override;
procedure AfterConstruction; override;
procedure Resume;
procedure Suspend;
procedure Terminate;
function WaitFor: LongWord;
class procedure Synchronize(AThread: TThread; AMethod: TThreadMethod); overload;
class procedure StaticSynchronize(AThread: TThread; AMethod: TThreadMethod);
property FatalException: TObject read FFatalException;
property FreeOnTerminate: Boolean read FFreeOnTerminate write FFreeOnTerminate;
property Handle: THandle read FHandle;
property Priority: TThreadPriority read GetPriority write SetPriority;
property Suspended: Boolean read FSuspended write SetSuspended;
property ThreadID: THandle read FThreadID;
property OnTerminate: TNotifyEvent read FOnTerminate write FOnTerminate;
end;
TThread类在Delphi的RTL里算是比较简单的类,类成员也不多,类属性都很简单明白,本文将只对几个比较重要的类成员方法和唯一的事件:OnTerminate作详细分析。
首先就是构造函数:
constructor TThread.Create(CreateSuspended: Boolean);
begin
inherited Create;
AddThread;
FSuspended := CreateSuspended;
FCreateSuspended := CreateSuspended;
FHandle := BeginThread(nil, 0, @ThreadProc, Pointer(Self), CREATE_SUSPENDED, FThreadID);
if FHandle = 0 then
raise EThread.CreateResFmt(@SThreadCreateError, [SysErrorMessage(GetLastError)]);
end;
虽然这个构造函数没有多少代码,但却可以算是最重要的一个成员,因为线程就是在这里被创建的。
在通过Inherited调用TObject.Create后,第一句就是调用一个过程:AddThread,其源码如下:
procedure AddThread;
begin
InterlockedIncrement(ThreadCount);
end;
同样有一个对应的RemoveThread:
procedure RemoveThread;
begin
InterlockedDecrement(ThreadCount);
end;
它们的功能很简单,就是通过增减一个全局变量来统计进程中的线程数。只是这里用于增减变量的并不是常用的Inc/Dec过程,而是用了InterlockedIncrement/InterlockedDecrement这一对过程,它们实现的功能完全一样,都是对变量加一或减一。但它们有一个最大的区别,那就是interlockedIncrement/InterlockedDecrement是线程安全的。即它们在多线程下能保证执行结果正确,而Inc/Dec不能。或者按操作系统理论中的术语来说,这是一对“原语”操作。 以加一为例来说明二者实现细节上的不同:
一般来说,对内存数据加一的操作分解以后有三个步骤:
1、 从内存中读出数据
2、 数据加一
3、 存入内存
现在假设在一个两个线程的应用中用Inc进行加一操作可能出现的一种情况:
1、 线程A从内存中读出数据(假设为3)
2、 线程B从内存中读出数据(也是3)
3、 线程A对数据加一(现在是4)
4、 线程B对数据加一(现在也是4)
5、 线程A将数据存入内存(现在内存中的数据是4)
6、 线程B也将数据存入内存(现在内存中的数据还是4,但两个线程都对它加了一,应该是5才对,所以这里出现了错误的结果)
而用InterlockIncrement过程则没有这个问题,因为所谓“原语”是一种不可中断的操作,即操作系统能保证在一个“原语”执行完毕前不会进行线程切换。所以在上面那个例子中,只有当线程A执行完将数据存入内存后,线程B才可以开始从中取数并进行加一操作,这样就保证了即使是在多线程情况下,结果也一定会是正确的。前面那个例子也说明一种“线程访问冲突”的情况,这也就是为什么线程之间需要“同步”Synchronize),关于这个,在后面说到同步时还会再详细讨论。
说到同步,有一个题外话:加拿大滑铁卢大学的教授李明曾就Synchronize一词在“线程同步”中被译作“同步”提出过异议,个人认为他说的其实很有道理。在中文中“同步”的意思是“同时发生”,而“线程同步”目的就是避免这种“同时发生”的事情。而在英文中,Synchronize的意思有两个:一个是传统意义上的同步(To occur at the same time),另一个是“协调一致”(To operate in unison)。在“线程同步”中的Synchronize一词应该是指后面一种意思,即“保证多个线程在访问同一数据时,保持协调一致,避免出错”。不过像这样译得不准的词在IT业还有很多,既然已经是约定俗成了,本文也将继续沿用,只是在这里说明一下,因为软件开发是一项细致的工作,该弄清楚的,绝不能含糊。
扯远了,回到TThread的构造函数上,接下来最重要就是这句了:
FHandle := BeginThread(nil, 0, @ThreadProc, Pointer(Self), CREATE_SUSPENDED, FThreadID);
这里就用到了前面说到的Delphi RTL函数BeginThread,它有很多参数,关键的是第三、四两个参数。第三个参数就是前面说到的线程函数,即在线程中执行的代码部分。第四个参数则是传递给线程函数的参数,在这里就是创建的线程对象(即Self)。其它的参数中,第五个是用于设置线程在创建后即挂起,不立即执行(启动线程的工作是在AfterConstruction中根据CreateSuspended标志来决定的),第六个是返回线程ID。
现在来看TThread的核心:线程函数ThreadProc。有意思的是这个线程类的核心却不是线程的成员,而是一个全局函数
(因为BeginThread过程的参数约定只能用全局函数)。下面是它的代码:
function ThreadProc(Thread: TThread): Integer;
var
FreeThread: Boolean;
begin
try
if not Thread.Terminated then
try
Thread.Execute;
except
Thread.FFatalException := AcquireExceptionObject;
end;
finally
FreeThread := Thread.FFreeOnTerminate;
Result := Thread.FReturnValue;
Thread.DoTerminate;
Thread.FFinished := True;
SignalSyncEvent;
if FreeThread then Thread.Free;
EndThread(Result);
end;
end;
虽然也没有多少代码,但却是整个TThread中最重要的部分,因为这段代码是真正在线程中执行的代码。下面对代码作逐行说明:
首先判断线程类的Terminated标志,如果未被标志为终止,则调用线程类的Execute方法执行线程代码,因为TThread是抽象类,Execute方法是抽象方法,所以本质上是执行派生类中的Execute代码。
所以说,Execute就是线程类中的线程函数,所有在Execute中的代码都需要当作线程代码来考虑,如防止访问冲突等。如果Execute发生异常,则通过AcquireExceptionObject取得异常对象,并存入线程类的FFatalException成员中。
最后是线程结束前做的一些收尾工作。局部变量FreeThread记录了线程类的FreeOnTerminated属性的设置,然后将线程返回值设置为线程类的返回值属性的值。然后执行线程类的DoTerminate方法。
DoTerminate方法的代码如下:
procedure TThread.DoTerminate;
begin
if Assigned(FOnTerminate) then Synchronize(CallOnTerminate);
end;
很简单,就是通过Synchronize来调用CallOnTerminate方法,而CallOnTerminate方法的代码如下,就是简单地调用OnTerminate事件:
procedure TThread.CallOnTerminate;
begin
if Assigned(FOnTerminate) then FOnTerminate(Self);
end;
因为OnTerminate事件是在Synchronize中执行的,所以本质上它并不是线程代码,而是主线程代码(具体见后面对Synchronize的分析)。
执行完OnTerminate后,将线程类的FFinished标志设置为True。接下来执行SignalSyncEvent过程,其代码如下:
procedure SignalSyncEvent;
begin
SetEvent(SyncEvent);
end;
也很简单,就是设置一下一个全局Event:SyncEvent,关于Event的使用,本文将在后文详述,而SyncEvent的用途将在WaitFor过程中说明。
然后根据FreeThread中保存的FreeOnTerminate设置决定是否释放线程类,在线程类释放时,还有一些些操作,详见接下来的析构函数实现。
最后调用EndThread结束线程,返回线程返回值。至此,线程完全结束。
说完构造函数,再来看析构函数:
destructor TThread.Destroy;
begin
if (FThreadID <> 0) and not FFinished then begin
Terminate;
if FCreateSuspended then
Resume;
WaitFor;
end;
if FHandle <> 0 then CloseHandle(FHandle);
inherited Destroy;
FFatalException.Free;
RemoveThread;
end;
在线程对象被释放前,首先要检查线程是否还在执行中,如果线程还在执行中(线程ID不为0,并且线程结束标志未设置),则调用Terminate过程结束线程。Terminate过程只是简单地设置线程类的Terminated标志,如下面的代码:
procedure TThread.Terminate;
begin
FTerminated := True;
end;
所以线程仍然必须继续执行到正常结束后才行,而不是立即终止线程,这一点要注意。
在这里说一点题外话:很多人都问过我,如何才能“立即”终止线程(当然是指用TThread创建的线程)。结果当然是不行!终止线程的唯一办法就是让Execute方法执行完毕,所以一般来说,要让你的线程能够尽快终止,必须在Execute方法中在较短的时间内不断地检查Terminated标志,以便能及时地退出。这是设计线程代码的一个很重要的原则!
当然如果你一定要能“立即”退出线程,那么TThread类不是一个好的选择,因为如果用API强制终止线程的话,最终会导致TThread线程对象不能被正确释放,在对象析构时出现Access Violation。这种情况你只能用API或RTL函数来创建线程。
如果线程处于启动挂起状态,则将线程转入运行状态,然后调用WaitFor进行等待,其功能就是等待到线程结束后才继续向下执行。关于WaitFor的实现,将放到后面说明。
线程结束后,关闭线程Handle(正常线程创建的情况下Handle都是存在的),释放操作系统创建的线程对象。
然后调用TObject.Destroy释放本对象,并释放已经捕获的异常对象,最后调用RemoveThread减小进程的线程数。
其它关于Suspend/Resume及线程优先级设置等方面,不是本文的重点,不再赘述。下面要讨论的是本文的另两个重点
:Synchronize和WaitFor。
但是在介绍这两个函数之前,需要先介绍另外两个线程同步技术:事件和临界区。
事件(Event)与Delphi中的事件有所不同。从本质上说,Event其实相当于一个全局的布尔变量。它有两个赋值操作:Set和Reset,相当于把它设置为True或False。而检查它的值是通过WaitFor操作进行。对应在Windows平台上,是三个API函数:SetEvent、ResetEvent、WaitForSingleObject(实现WaitFor功能的API还有几个,这是最简单的一个)。
这三个都是原语,所以Event可以实现一般布尔变量不能实现的在多线程中的应用。Set和Reset的功能前面已经说过了,现在来说一下WaitFor的功能:
WaitFor的功能是检查Event的状态是否是Set状态(相当于True),如果是则立即返回,如果不是,则等待它变为Set状态,在等待期间,调用WaitFor的线程处于挂起状态。另外WaitFor有一个参数用于超时设置,如果此参数为0,则不等待,立即返回Event的状态,如果是INFINITE则无限等待,直到Set状态发生,若是一个有限的数值,则等待相应的毫秒数后返回Event的状态。
当Event从Reset状态向Set状态转换时,唤醒其它由于WaitFor这个Event而挂起的线程,这就是它为什么叫Event的原因。所谓“事件”就是指“状态的转换”。通过Event可以在线程间传递这种“状态转换”信息。
当然用一个受保护(见下面的临界区介绍)的布尔变量也能实现类似的功能,只要用一个循环检查此布尔值的代码来代替WaitFor即可。从功能上说完全没有问题,但实际使用中就会发现,这样的等待会占用大量的CPU资源,降低系统性能,影响到别的线程的执行速度,所以是不经济的,有的时候甚至可能会有问题。所以不建议这样用。
临界区(CriticalSection)则是一项共享数据访问保护的技术。它其实也是相当于一个全局的布尔变量。但对它的操作有所不同,它只有两个操作:Enter和Leave,同样可以把它的两个状态当作True和False,分别表示现在是否处于临界区中。这两个操作也是原语,所以它可以用于在多线程应用中保护共享数据,防止访问冲突。
用临界区保护共享数据的方法很简单:在每次要访问共享数据之前调用Enter设置进入临界区标志,然后再操作数据,最后调用Leave离开临界区。它的保护原理是这样的:当一个线程进入临界区后,如果此时另一个线程也要访问这个数据,则它会在调用Enter时,发现已经有线程进入临界区,然后此线程就会被挂起,等待当前在临界区的线程调用Leave离开临界区,当另一个线程完成操作,调用Leave离开后,此线程就会被唤醒,并设置临界区标志,开始操作数据,这样就防止了访问冲突。
以前面那个InterlockedIncrement为例,我们用CriticalSection(Windows API)来实现它:
Var
InterlockedCrit : TRTLCriticalSection;
Procedure InterlockedIncrement( var aValue : Integer );
Begin
EnterCriticalSection( InterlockedCrit );
Inc( aValue );
LeaveCriticalSection( InterlockedCrit );
End;
现在再来看前面那个例子:
1. 线程A进入临界区(假设数据为3)
2. 线程B进入临界区,因为A已经在临界区中,所以B被挂起
3. 线程A对数据加一(现在是4)
4. 线程A离开临界区,唤醒线程B(现在内存中的数据是4)
5. 线程B被唤醒,对数据加一(现在就是5了)
6. 线程B离开临界区,现在的数据就是正确的了。
临界区就是这样保护共享数据的访问。
关于临界区的使用,有一点要注意:即数据访问时的异常情况处理。因为如果在数据操作时发生异常,将导致Leave操作没有被执行,结果将使本应被唤醒的线程未被唤醒,可能造成程序的没有响应。所以一般来说,如下面这样使用临界区才是正确的做法:
EnterCriticalSection
Try
// 操作临界区数据
Finally
LeaveCriticalSection
End;
最后要说明的是,Event和CriticalSection都是操作系统资源,使用前都需要创建,使用完后也同样需要释放。如
TThread类用到的一个全局Event:SyncEvent和全局CriticalSection:TheadLock,都是在InitThreadSynchronization和DoneThreadSynchronization中进行创建和释放的,而它们则是在Classes单元的Initialization和Finalization中被调用的。
由于在TThread中都是用API来操作Event和CriticalSection的,所以前面都是以API为例,其实Delphi已经提供了对它们的封装,在SyncObjs单元中,分别是TEvent类和TCriticalSection类。用法也与前面用API的方法相差无几。因为TEvent的构造函数参数过多,为了简单起见,Delphi还提供了一个用默认参数初始化的Event类:TSimpleEvent。
线程本质上是进程中一段并发运行的代码。一个进程至少有一个线程,即所谓的主线程。同时还可以有多个子线程。当一个进程中用到超过一个线程时,就是所谓的“多线程”。
那么这个所谓的“一段代码”是如何定义的呢?其实就是一个函数或过程(对Delphi而言)。
如果用Windows API来创建线程的话,是通过一个叫做CreateThread的API函数来实现的,它的定义为:
HANDLE CreateThread(
LPSECURITY_ATTRIBUTES lpThreadAttributes, //线程属性(用于在NT下进行线程的安全属性设置,在9X下无效),
DWORD dwStackSize, //堆栈大小
LPTHREAD_START_ROUTINE lpStartAddress, //起始地址
LPVOID lpParameter, //参数
DWORD dwCreationFlags, //创建标志(用于设置线程创建时的状态)
LPDWORD lpThreadId 线程ID
);
最后返回线程Handle。其中的起始地址就是线程函数的入口,直至线程函数结束,线程也就结束了。
因为CreateThread参数很多,而且是Windows的API,所以在C Runtime Library里提供了一个通用的线程函数(理论上可以在任何支持线程的OS中使用):
unsigned long _beginthread(void (_USERENTRY *__start)(void *), unsigned __stksize, void *__arg);
Delphi也提供了一个相同功能的类似函数:
function BeginThread(
SecurityAttributes: Pointer;
StackSize: LongWord;
ThreadFunc: TThreadFunc;
Parameter: Pointer;
CreationFlags: LongWord;
var ThreadId: LongWord
): Integer;
这三个函数的功能是基本相同的,它们都是将线程函数中的代码放到一个独立的线程中执行。线程函数与一般函数的最大不同在于,线程函数一启动,这三个线程启动函数就返回了,主线程继续向下执行,而线程函数在一个独立的线程中执行,它要执行多久,什么时候返回,主线程是不管也不知道的。
正常情况下,线程函数返回后,线程就终止了。但也有其它方式:
Windows API:
VOID ExitThread( DWORD dwExitCode );
C Runtime Library:
void _endthread(void);
Delphi Runtime Library:
procedure EndThread(ExitCode: Integer);
为了记录一些必要的线程数据(状态/属性等),OS会为线程创建一个内部Object,如在Windows中那个Handle便是这个内部Object的Handle,所以在线程结束的时候还应该释放这个Object。
虽然说用API或RTL(Runtime Library)已经可以很方便地进行多线程编程了,但是还是需要进行较多的细节处理,为此Delphi在Classes单元中对线程作了一个较好的封装,这就是VCL的线程类:TThread
使用这个类也很简单,大多数的Delphi书籍都有说,基本用法是:先从TThread派生一个自己的线程类(因为TThread是一个抽象类,不能生成实例),然后是Override抽象方法:Execute(这就是线程函数,也就是在线程中执行的代码部分),如果需要用到可视VCL对象,还需要通过Synchronize过程进行。关于之方面的具体细节,这里不再赘述,请参考相关书籍。
本文接下来要讨论的是TThread类是如何对线程进行封装的,也就是深入研究一下TThread类的实现。因为只是真正地了解了它,才更好地使用它。
下面是DELPHI7中TThread类的声明(本文只讨论在Windows平台下的实现,所以去掉了所有有关Linux平台部分的代码):
TThread = class
private
FHandle: THandle;
FThreadID: THandle;
FCreateSuspended: Boolean;
FTerminated: Boolean;
FSuspended: Boolean;
FFreeOnTerminate: Boolean;
FFinished: Boolean;
FReturnValue: Integer;
FOnTerminate: TNotifyEvent;
FSynchronize: TSynchronizeRecord;
FFatalException: TObject;
procedure CallOnTerminate;
class procedure Synchronize(ASyncRec: PSynchronizeRecord); overload;
function GetPriority: TThreadPriority;
procedure SetPriority(Value: TThreadPriority);
procedure SetSuspended(Value: Boolean);
protected
procedure CheckThreadError(ErrCode: Integer); overload;
procedure CheckThreadError(Success: Boolean); overload;
procedure DoTerminate; virtual;
procedure Execute; virtual; abstract;
procedure Synchronize(Method: TThreadMethod); overload;
property ReturnValue: Integer read FReturnValue write FReturnValue;
property Terminated: Boolean read FTerminated;
public
constructor Create(CreateSuspended: Boolean);
destructor Destroy; override;
procedure AfterConstruction; override;
procedure Resume;
procedure Suspend;
procedure Terminate;
function WaitFor: LongWord;
class procedure Synchronize(AThread: TThread; AMethod: TThreadMethod); overload;
class procedure StaticSynchronize(AThread: TThread; AMethod: TThreadMethod);
property FatalException: TObject read FFatalException;
property FreeOnTerminate: Boolean read FFreeOnTerminate write FFreeOnTerminate;
property Handle: THandle read FHandle;
property Priority: TThreadPriority read GetPriority write SetPriority;
property Suspended: Boolean read FSuspended write SetSuspended;
property ThreadID: THandle read FThreadID;
property OnTerminate: TNotifyEvent read FOnTerminate write FOnTerminate;
end;
TThread类在Delphi的RTL里算是比较简单的类,类成员也不多,类属性都很简单明白,本文将只对几个比较重要的类成员方法和唯一的事件:OnTerminate作详细分析。
首先就是构造函数:
constructor TThread.Create(CreateSuspended: Boolean);
begin
inherited Create;
AddThread;
FSuspended := CreateSuspended;
FCreateSuspended := CreateSuspended;
FHandle := BeginThread(nil, 0, @ThreadProc, Pointer(Self), CREATE_SUSPENDED, FThreadID);
if FHandle = 0 then
raise EThread.CreateResFmt(@SThreadCreateError, [SysErrorMessage(GetLastError)]);
end;
虽然这个构造函数没有多少代码,但却可以算是最重要的一个成员,因为线程就是在这里被创建的。
在通过Inherited调用TObject.Create后,第一句就是调用一个过程:AddThread,其源码如下:
procedure AddThread;
begin
InterlockedIncrement(ThreadCount);
end;
同样有一个对应的RemoveThread:
procedure RemoveThread;
begin
InterlockedDecrement(ThreadCount);
end;
它们的功能很简单,就是通过增减一个全局变量来统计进程中的线程数。只是这里用于增减变量的并不是常用的Inc/Dec过程,而是用了InterlockedIncrement/InterlockedDecrement这一对过程,它们实现的功能完全一样,都是对变量加一或减一。但它们有一个最大的区别,那就是interlockedIncrement/InterlockedDecrement是线程安全的。即它们在多线程下能保证执行结果正确,而Inc/Dec不能。或者按操作系统理论中的术语来说,这是一对“原语”操作。 以加一为例来说明二者实现细节上的不同:
一般来说,对内存数据加一的操作分解以后有三个步骤:
1、 从内存中读出数据
2、 数据加一
3、 存入内存
现在假设在一个两个线程的应用中用Inc进行加一操作可能出现的一种情况:
1、 线程A从内存中读出数据(假设为3)
2、 线程B从内存中读出数据(也是3)
3、 线程A对数据加一(现在是4)
4、 线程B对数据加一(现在也是4)
5、 线程A将数据存入内存(现在内存中的数据是4)
6、 线程B也将数据存入内存(现在内存中的数据还是4,但两个线程都对它加了一,应该是5才对,所以这里出现了错误的结果)
而用InterlockIncrement过程则没有这个问题,因为所谓“原语”是一种不可中断的操作,即操作系统能保证在一个“原语”执行完毕前不会进行线程切换。所以在上面那个例子中,只有当线程A执行完将数据存入内存后,线程B才可以开始从中取数并进行加一操作,这样就保证了即使是在多线程情况下,结果也一定会是正确的。前面那个例子也说明一种“线程访问冲突”的情况,这也就是为什么线程之间需要“同步”Synchronize),关于这个,在后面说到同步时还会再详细讨论。
说到同步,有一个题外话:加拿大滑铁卢大学的教授李明曾就Synchronize一词在“线程同步”中被译作“同步”提出过异议,个人认为他说的其实很有道理。在中文中“同步”的意思是“同时发生”,而“线程同步”目的就是避免这种“同时发生”的事情。而在英文中,Synchronize的意思有两个:一个是传统意义上的同步(To occur at the same time),另一个是“协调一致”(To operate in unison)。在“线程同步”中的Synchronize一词应该是指后面一种意思,即“保证多个线程在访问同一数据时,保持协调一致,避免出错”。不过像这样译得不准的词在IT业还有很多,既然已经是约定俗成了,本文也将继续沿用,只是在这里说明一下,因为软件开发是一项细致的工作,该弄清楚的,绝不能含糊。
扯远了,回到TThread的构造函数上,接下来最重要就是这句了:
FHandle := BeginThread(nil, 0, @ThreadProc, Pointer(Self), CREATE_SUSPENDED, FThreadID);
这里就用到了前面说到的Delphi RTL函数BeginThread,它有很多参数,关键的是第三、四两个参数。第三个参数就是前面说到的线程函数,即在线程中执行的代码部分。第四个参数则是传递给线程函数的参数,在这里就是创建的线程对象(即Self)。其它的参数中,第五个是用于设置线程在创建后即挂起,不立即执行(启动线程的工作是在AfterConstruction中根据CreateSuspended标志来决定的),第六个是返回线程ID。
现在来看TThread的核心:线程函数ThreadProc。有意思的是这个线程类的核心却不是线程的成员,而是一个全局函数
(因为BeginThread过程的参数约定只能用全局函数)。下面是它的代码:
function ThreadProc(Thread: TThread): Integer;
var
FreeThread: Boolean;
begin
try
if not Thread.Terminated then
try
Thread.Execute;
except
Thread.FFatalException := AcquireExceptionObject;
end;
finally
FreeThread := Thread.FFreeOnTerminate;
Result := Thread.FReturnValue;
Thread.DoTerminate;
Thread.FFinished := True;
SignalSyncEvent;
if FreeThread then Thread.Free;
EndThread(Result);
end;
end;
虽然也没有多少代码,但却是整个TThread中最重要的部分,因为这段代码是真正在线程中执行的代码。下面对代码作逐行说明:
首先判断线程类的Terminated标志,如果未被标志为终止,则调用线程类的Execute方法执行线程代码,因为TThread是抽象类,Execute方法是抽象方法,所以本质上是执行派生类中的Execute代码。
所以说,Execute就是线程类中的线程函数,所有在Execute中的代码都需要当作线程代码来考虑,如防止访问冲突等。如果Execute发生异常,则通过AcquireExceptionObject取得异常对象,并存入线程类的FFatalException成员中。
最后是线程结束前做的一些收尾工作。局部变量FreeThread记录了线程类的FreeOnTerminated属性的设置,然后将线程返回值设置为线程类的返回值属性的值。然后执行线程类的DoTerminate方法。
DoTerminate方法的代码如下:
procedure TThread.DoTerminate;
begin
if Assigned(FOnTerminate) then Synchronize(CallOnTerminate);
end;
很简单,就是通过Synchronize来调用CallOnTerminate方法,而CallOnTerminate方法的代码如下,就是简单地调用OnTerminate事件:
procedure TThread.CallOnTerminate;
begin
if Assigned(FOnTerminate) then FOnTerminate(Self);
end;
因为OnTerminate事件是在Synchronize中执行的,所以本质上它并不是线程代码,而是主线程代码(具体见后面对Synchronize的分析)。
执行完OnTerminate后,将线程类的FFinished标志设置为True。接下来执行SignalSyncEvent过程,其代码如下:
procedure SignalSyncEvent;
begin
SetEvent(SyncEvent);
end;
也很简单,就是设置一下一个全局Event:SyncEvent,关于Event的使用,本文将在后文详述,而SyncEvent的用途将在WaitFor过程中说明。
然后根据FreeThread中保存的FreeOnTerminate设置决定是否释放线程类,在线程类释放时,还有一些些操作,详见接下来的析构函数实现。
最后调用EndThread结束线程,返回线程返回值。至此,线程完全结束。
说完构造函数,再来看析构函数:
destructor TThread.Destroy;
begin
if (FThreadID <> 0) and not FFinished then begin
Terminate;
if FCreateSuspended then
Resume;
WaitFor;
end;
if FHandle <> 0 then CloseHandle(FHandle);
inherited Destroy;
FFatalException.Free;
RemoveThread;
end;
在线程对象被释放前,首先要检查线程是否还在执行中,如果线程还在执行中(线程ID不为0,并且线程结束标志未设置),则调用Terminate过程结束线程。Terminate过程只是简单地设置线程类的Terminated标志,如下面的代码:
procedure TThread.Terminate;
begin
FTerminated := True;
end;
所以线程仍然必须继续执行到正常结束后才行,而不是立即终止线程,这一点要注意。
在这里说一点题外话:很多人都问过我,如何才能“立即”终止线程(当然是指用TThread创建的线程)。结果当然是不行!终止线程的唯一办法就是让Execute方法执行完毕,所以一般来说,要让你的线程能够尽快终止,必须在Execute方法中在较短的时间内不断地检查Terminated标志,以便能及时地退出。这是设计线程代码的一个很重要的原则!
当然如果你一定要能“立即”退出线程,那么TThread类不是一个好的选择,因为如果用API强制终止线程的话,最终会导致TThread线程对象不能被正确释放,在对象析构时出现Access Violation。这种情况你只能用API或RTL函数来创建线程。
如果线程处于启动挂起状态,则将线程转入运行状态,然后调用WaitFor进行等待,其功能就是等待到线程结束后才继续向下执行。关于WaitFor的实现,将放到后面说明。
线程结束后,关闭线程Handle(正常线程创建的情况下Handle都是存在的),释放操作系统创建的线程对象。
然后调用TObject.Destroy释放本对象,并释放已经捕获的异常对象,最后调用RemoveThread减小进程的线程数。
其它关于Suspend/Resume及线程优先级设置等方面,不是本文的重点,不再赘述。下面要讨论的是本文的另两个重点
:Synchronize和WaitFor。
但是在介绍这两个函数之前,需要先介绍另外两个线程同步技术:事件和临界区。
事件(Event)与Delphi中的事件有所不同。从本质上说,Event其实相当于一个全局的布尔变量。它有两个赋值操作:Set和Reset,相当于把它设置为True或False。而检查它的值是通过WaitFor操作进行。对应在Windows平台上,是三个API函数:SetEvent、ResetEvent、WaitForSingleObject(实现WaitFor功能的API还有几个,这是最简单的一个)。
这三个都是原语,所以Event可以实现一般布尔变量不能实现的在多线程中的应用。Set和Reset的功能前面已经说过了,现在来说一下WaitFor的功能:
WaitFor的功能是检查Event的状态是否是Set状态(相当于True),如果是则立即返回,如果不是,则等待它变为Set状态,在等待期间,调用WaitFor的线程处于挂起状态。另外WaitFor有一个参数用于超时设置,如果此参数为0,则不等待,立即返回Event的状态,如果是INFINITE则无限等待,直到Set状态发生,若是一个有限的数值,则等待相应的毫秒数后返回Event的状态。
当Event从Reset状态向Set状态转换时,唤醒其它由于WaitFor这个Event而挂起的线程,这就是它为什么叫Event的原因。所谓“事件”就是指“状态的转换”。通过Event可以在线程间传递这种“状态转换”信息。
当然用一个受保护(见下面的临界区介绍)的布尔变量也能实现类似的功能,只要用一个循环检查此布尔值的代码来代替WaitFor即可。从功能上说完全没有问题,但实际使用中就会发现,这样的等待会占用大量的CPU资源,降低系统性能,影响到别的线程的执行速度,所以是不经济的,有的时候甚至可能会有问题。所以不建议这样用。
临界区(CriticalSection)则是一项共享数据访问保护的技术。它其实也是相当于一个全局的布尔变量。但对它的操作有所不同,它只有两个操作:Enter和Leave,同样可以把它的两个状态当作True和False,分别表示现在是否处于临界区中。这两个操作也是原语,所以它可以用于在多线程应用中保护共享数据,防止访问冲突。
用临界区保护共享数据的方法很简单:在每次要访问共享数据之前调用Enter设置进入临界区标志,然后再操作数据,最后调用Leave离开临界区。它的保护原理是这样的:当一个线程进入临界区后,如果此时另一个线程也要访问这个数据,则它会在调用Enter时,发现已经有线程进入临界区,然后此线程就会被挂起,等待当前在临界区的线程调用Leave离开临界区,当另一个线程完成操作,调用Leave离开后,此线程就会被唤醒,并设置临界区标志,开始操作数据,这样就防止了访问冲突。
以前面那个InterlockedIncrement为例,我们用CriticalSection(Windows API)来实现它:
Var
InterlockedCrit : TRTLCriticalSection;
Procedure InterlockedIncrement( var aValue : Integer );
Begin
EnterCriticalSection( InterlockedCrit );
Inc( aValue );
LeaveCriticalSection( InterlockedCrit );
End;
现在再来看前面那个例子:
1. 线程A进入临界区(假设数据为3)
2. 线程B进入临界区,因为A已经在临界区中,所以B被挂起
3. 线程A对数据加一(现在是4)
4. 线程A离开临界区,唤醒线程B(现在内存中的数据是4)
5. 线程B被唤醒,对数据加一(现在就是5了)
6. 线程B离开临界区,现在的数据就是正确的了。
临界区就是这样保护共享数据的访问。
关于临界区的使用,有一点要注意:即数据访问时的异常情况处理。因为如果在数据操作时发生异常,将导致Leave操作没有被执行,结果将使本应被唤醒的线程未被唤醒,可能造成程序的没有响应。所以一般来说,如下面这样使用临界区才是正确的做法:
EnterCriticalSection
Try
// 操作临界区数据
Finally
LeaveCriticalSection
End;
最后要说明的是,Event和CriticalSection都是操作系统资源,使用前都需要创建,使用完后也同样需要释放。如
TThread类用到的一个全局Event:SyncEvent和全局CriticalSection:TheadLock,都是在InitThreadSynchronization和DoneThreadSynchronization中进行创建和释放的,而它们则是在Classes单元的Initialization和Finalization中被调用的。
由于在TThread中都是用API来操作Event和CriticalSection的,所以前面都是以API为例,其实Delphi已经提供了对它们的封装,在SyncObjs单元中,分别是TEvent类和TCriticalSection类。用法也与前面用API的方法相差无几。因为TEvent的构造函数参数过多,为了简单起见,Delphi还提供了一个用默认参数初始化的Event类:TSimpleEvent。
相关推荐
为了简化多线程编程,Delphi提供了一个内置的线程类`TThread`。使用`TThread`可以更容易地管理和控制线程。下面是一个简单的示例代码: ```delphi type TMyThread = class(TThread) protected procedure Execute...
1. **TThread类**:这是Delphi中进行多线程编程的核心。开发者可以通过继承`TThread`类并重写其`Execute`方法来定义线程的具体行为。 2. **线程同步机制**:包括`TCriticalSection`、`TMutex`和`TSemaphore`等,用于...
多线程编程是 Delphi 中的一种强大功能,可以让程序同时执行多个任务,从而提高程序的效率和性能。在本节中,我们将详细介绍 Delphi 多线程编程的基本概念、创建线程、线程的生命周期、线程同步、线程安全等方面的...
Delphi,作为一个流行的Object Pascal开发环境,提供了丰富的工具和库来支持多线程编程。本篇文章将深入探讨Delphi中的多线程技术,包括其原理、实现方式以及在实际开发中的应用。 一、多线程概念 多线程是指在一个...
Delphi2010多线程编程教程旨在帮助开发者快速掌握多线程编程的要领,包括基础知识、使用TThread类和CreateThread函数实现多线程、注意事项和实例代码分析等内容。本教程适合初学者和有经验的开发者,旨在帮助他们...
Delphi是一种流行的编程语言,它提供了多种方式来实现多线程编程。在Delphi中,线程编程主要涉及到TThread类,它抽象了Windows API中的线程功能,提供了一个面向对象的方式来创建和管理线程。在多线程编程中,有以下...
在Delphi编程环境中,多线程是一种非常重要的技术,它允许程序同时执行多个独立的任务,提高应用程序的响应性和效率。本篇文章将详细讲解一个在...通过这个简单的例子,你应该能更好地理解和应用Delphi中的多线程编程。
在IT行业中,多线程技术是一项关键的编程概念,它允许程序同时执行多个任务,显著提高了效率和响应...通过学习和实践,开发者不仅可以掌握多线程编程,还能了解到如何应对网络环境下的挑战,提高软件的性能和用户体验。
在Delphi中实现多线程编程是提升应用程序性能的重要手段。多线程可以使得耗时的任务在后台运行,而不阻塞用户界面,从而提升用户体验。Delphi的VCL框架提供了一套丰富的组件和类库来支持多线程编程。 首先,Delphi...
综上所述,Delphi多线程调用DLL涉及到了线程创建、DLL加载与卸载、函数调用、线程安全、同步原语使用等多个方面,需要开发者对多线程编程有深入的理解和实践经验。正确地处理这些问题将能充分利用多核处理器的优势,...
在编程领域,多线程是一种常见且强大的技术,它允许程序同时执行多个任务,从而提高效率和响应性。本主题聚焦于Delphi 7中实现的多线程测试,特别是涉及40个并发线程的情况。Delphi是Embarcadero开发的一款集成开发...
线程同步是多线程编程中的一个重要概念,尤其是在访问共享资源时尤为重要。线程异步执行可能会导致无法预料的结果,因此在访问共享资源时,需要确保该资源在某一时刻只能被一个线程使用。 - **同步方法**:Delphi的...
在IT行业中,多线程编程是一项关键技能,特别是在需要高效利用计算资源和改善应用程序响应速度的场景下。本文将深入探讨如何使用Delphi这一强大的RAD(快速应用开发)工具来实现多线程文件拷贝的功能。 Delphi是...
在Delphi中,我们可以使用TThread类或VCL库中的其他多线程组件来创建和管理线程。例如,`Unit1`和`Unit2`可能是两个不同的线程类,分别实现了对数据库的不同访问逻辑。 `Unit1.pas`和`Unit2.pas`是Delphi的源代码...
《Delphi多线程教程》是一本专注于讲解如何在Delphi环境下进行多线程编程的专业教程。多线程技术在现代软件开发中扮演着至关重要的角色,它允许应用程序同时执行多个任务,提升效率,优化用户体验。Delphi作为一款...
在Delphi编程环境中,多线程技术是一种提升应用程序性能的重要手段。它允许程序同时执行多个独立的任务,从而更好地利用现代计算机的多核处理器资源...通过分析和运行这个demo,你将更深入地理解Delphi中的多线程编程。
在Delphi编程环境中,多线程控件是一个强大的工具,它允许开发者在单个应用程序中同时执行多个任务,提升程序的效率和响应性。...通过不断学习和实践,你将在Delphi的多线程编程领域变得更加熟练。
在Delphi编程环境中,多线程技术是一...总之,理解并熟练掌握Delphi的线程编程对于编写高效、稳定的多线程应用至关重要。在实际开发中,应根据具体需求选择合适的线程模型和同步策略,以实现最优的系统性能和用户体验。
总的来说,通过合理运用Delphi的多线程技术和日志管理策略,我们可以创建一个高效、安全且易于维护的日志系统。这样的系统不仅可以帮助开发者追踪和调试问题,还可以为系统监控提供关键数据,确保软件系统的稳定运行...
在IT领域,多线程数据库应用程序编程是一项关键的技术,尤其在使用Delphi这种高效、强大的RAD(快速应用开发)工具时。Delphi以其高效的VCL框架和原生的编译器支持,使得开发者能够轻松地构建多线程的数据库应用,...