`
jiang5495
  • 浏览: 94065 次
  • 性别: Icon_minigender_1
  • 来自: 湖南
社区版块
存档分类
最新评论

A*算法入门(转载)

阅读更多
   深入A*算法 
                                 -浅析A*算法在搜索最短路径中的应用

                                                  Sunway
  目 录
  1 A*算法的程序编写原理
  2 用A*算法实现最短路径的搜索


--------------------------------------------------------------------------------

  在这里我将对A*算法的实际应用进行一定的探讨,并且举一个有关A*算法在最短路径搜索的例子。值得注意的是这里并不对A*的基本的概念作介绍,如果你还对A*算法不清楚的话,请看姊妹篇《初识A*算法》。
  这里所举的例子是参考AMIT主页中的一个源程序,你可以在AMIT的站点上下载也可以在我的站点上下载。你使用这个源程序时,应该遵守一定的公约。

1、A*算法的程序编写原理
  我在《初识A*算法》中说过,A*算法是最好优先算法的一种。只是有一些约束条件而已。我们先来看看最好优先算法是如何编写的吧。如图有如下的状态空间:(起始位置是A,目标位置是P,字母后的数字表示节点的估价值)。
  如图有如下的状态空间:(起始位置是A,目标位置是P,字母后的数字表示节点的估价值)


图1 状态空间图

  搜索过程中设置两个表:OPEN和CLOSED。OPEN表保存了所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。算法中有一步是根据估价函数重排OPEN表。这样循环中的每一步只考虑OPEN表中状态最好的节点。具体搜索过程如下:

  1)初始状态:
      OPEN=[A5];            CLOSED=[];
  2)估算A5,取得搜有子节点,并放入OPEN表中;
      OPEN=[B4, C4, D6];        CLOSED=[A5]
  3)估算B4,取得搜有子节点,并放入OPEN表中;
      OPEN=[C4, E5, F5, D6];      CLOSED=[B4, A5]
  4)估算C4;取得搜有子节点,并放入OPEN表中;
      OPEN=[H3, G4, E5, F5, D6]     CLOSED=[C4, B4, A5]
  5)估算H3,取得搜有子节点,并放入OPEN表中;
      OPEN=[O2, P3, G4, E5, F5, D6];  CLOSED=H3C4, B4, A5]
  6)估算O2,取得搜有子节点,并放入OPEN表中;
      OPEN=[P3, G4, E5, F5, D6];    CLOSED=[O2, H3, C4, B4, A5]
  7)估算P3,已得到解;

  看了具体的过程,再看看伪程序吧。算法的伪程序如下:

  Best_First_Search()
  {
    Open = [起始节点];
    Closed = [];
    while ( Open表非空 )
    {
      从Open中取得一个节点X, 并从OPEN表中删除.
      if (X是目标节点)
      {
        求得路径PATH;
        返回路径PATH;
      }
      for (每一个X的子节点Y)
      {
        if( Y不在OPEN表和CLOSE表中 )
        {
          求Y的估价值;
          并将Y插入OPEN表中; //还没有排序
        }
        else if( Y在OPEN表中 )
        {
          if( Y的估价值小于OPEN表的估价值 )
            更新OPEN表中的估价值;
        }
        else //Y在CLOSE表中
        {
          if( Y的估价值小于CLOSE表的估价值 )
          {
            更新CLOSE表中的估价值;
            从CLOSE表中移出节点, 并放入OPEN表中;
          }
        }
        将X节点插入CLOSE表中;
        按照估价值将OPEN表中的节点排序;
      } //end for
    } //end while
  } //end func

  啊!伪程序出来了,写一个源程序应该不是问题了,依葫芦画瓢就可以。A*算法的程序与此是一样的,只要注意估价函数中的g(n)的h(n)约束条件就可以了。不清楚的可以看看《初识A*算法》。好了,我们可以进入另一个重要的话题,用A*算法实现最短路径的搜索。在此之前你最好认真的理解前面的算法。不清楚可以找我。

2、用A*算法实现最短路径的搜索
  在游戏设计中,经常要涉及到最短路径的搜索,现在一个比较好的方法就是用A*算法进行设计。他的好处我们就不用管了,反正就是好!
  注意下面所说的都是以ClassAstar这个程序为蓝本,你可以在这里下载这个程序。这个程序是一个完整的工程。里面带了一个EXE文件。可以先看看。
  先复习一下,A*算法的核心是估价函数f(n),它包括g(n)和h(n)两部分。g(n)是已经走过的代价,h(n)是n到目标的估计代价。在这个例子中g(n)表示在状态空间从起始节点到n节点的 深度,h(n)表示n节点所在地图的位置到目标位置的直线距离。啊!一个是状态空间,一个是实际的地图,不要搞错了。再详细点说,有一个物体A,在地图上的坐标是(xa,ya),A所要到达的目标b的坐标是(xb,yb)。则开始搜索时,设置一个起始节点1,生成八个子节点2 - 9 因为有八个方向。如图:



图2 节点图


  先看搜索主函数:

  void AstarPathfinder::FindPath(int sx, int sy, int dx, int dy)
  {
    NODE *Node, *BestNode;
    int TileNumDest;

    //得到目标位置,作判断用
    TileNumDest = TileNum(sx, sy);

    //生成Open和Closed表
    OPEN=( NODE* )calloc(1,sizeof( NODE ));
    CLOSED=( NODE* )calloc(1,sizeof( NODE ));

    //生成起始节点,并放入Open表中
    Node=( NODE* )calloc(1,sizeof( NODE ));
    Node->g = 0;

    //这是计算h值
    Node->h = (dx-sx)*(dx-sx) + (dy-sy)*(dy-sy); // should really use sqrt().

    //这是计算f值,即估价值
    Node->f = Node->g+Node->h;
    Node->NodeNum = TileNum(dx, dy);
    Node->x = dx;
    Node->y = dy;

    OPEN->NextNode=Node; // make Open List point to first node
    for (;;)
    {
      //从Open表中取得一个估价值最好的节点
      BestNode=ReturnBestNode();

      //如果该节点是目标节点就退出
      if (BestNode->NodeNum == TileNumDest) // if we've found the end, break and finish
        break;
      //否则生成子节点
      GenerateSuccessors(BestNode,sx,sy);
    }
    PATH = BestNode;
  }

  再看看生成子节点函数 GenerateSuccessors:

  void AstarPathfinder::GenerateSuccessors(NODE *BestNode, int dx, int dy)
  {
    int x, y;

    //依次生成八个方向的子节点,简单!
    // Upper-Left
    if ( FreeTile(x=BestNode->x-TILESIZE, y=BestNode->y-TILESIZE) )
      GenerateSucc(BestNode,x,y,dx,dy);
    // Upper
    if ( FreeTile(x=BestNode->x, y=BestNode->y-TILESIZE) )
      GenerateSucc(BestNode,x,y,dx,dy);
    // Upper-Right
    if ( FreeTile(x=BestNode->x+TILESIZE, y=BestNode->y-TILESIZE) )
      GenerateSucc(BestNode,x,y,dx,dy);
    // Right
    if ( FreeTile(x=BestNode->x+TILESIZE, y=BestNode->y) )
      GenerateSucc(BestNode,x,y,dx,dy);
    // Lower-Right
    if ( FreeTile(x=BestNode->x+TILESIZE, y=BestNode->y+TILESIZE) )
      GenerateSucc(BestNode,x,y,dx,dy);
    // Lower
    if ( FreeTile(x=BestNode->x, y=BestNode->y+TILESIZE) )
      GenerateSucc(BestNode,x,y,dx,dy);
    // Lower-Left
    if ( FreeTile(x=BestNode->x-TILESIZE, y=BestNode->y+TILESIZE) )
      GenerateSucc(BestNode,x,y,dx,dy);
    // Left
    if ( FreeTile(x=BestNode->x-TILESIZE, y=BestNode->y) )
      GenerateSucc(BestNode,x,y,dx,dy);
  }

  看看最重要的函数GenerateSucc:

  void AstarPathfinder::GenerateSucc(NODE *BestNode,int x, int y, int dx, int dy)
  {
    int g, TileNumS, c = 0;
    NODE *Old, *Successor;

    //计算子节点的 g 值
    g = BestNode->g+1; // g(Successor)=g(BestNode)+cost of getting from BestNode to Successor
    TileNumS = TileNum(x,y); // identification purposes

    //子节点再Open表中吗?
    if ( (Old=CheckOPEN(TileNumS)) != NULL ) // if equal to NULL then not in OPEN list,
                         // else it returns the Node in Old
    {
      //若在
      for( c = 0; c <8; c++)
        if( BestNode->Child[c] == NULL ) // Add Old to the list of BestNode's Children
                         // (or Successors).
         break;
        BestNode->Child[c] = Old;
        //比较Open表中的估价值和当前的估价值(只要比较g值就可以了)
        if ( g g ) // if our new g value is Parent = BestNode;
          Old->g = g;
          Old->f = g + Old->h;
        }
      }
      else //在Closed表中吗?
        if ( (Old=CheckCLOSED(TileNumS)) != NULL ) // if equal to NULL then not in OPEN list
                              // else it returns the Node in Old
        {
          //若在
          for( c = 0; c<8; c++)
            if ( BestNode->Child[c] == NULL ) // Add Old to the list of BestNode's
                             // Children (or Successors). break;
            BestNode->Child[c] = Old;
            //比较Closed表中的估价值和当前的估价值(只要比较g值就可以了)
            if ( g g ) // if our new g value is Parent = BestNode;
              Old->g = g;
              Old->f = g + Old->h; //再依次更新Old的所有子节点的估价值
              PropagateDown(Old); // Since we changed the g value of Old, we need
                         // to propagate this new value downwards, i.e.
                         // do a Depth-First traversal of the tree!
             }
        }
        else //不在Open表中也不在Close表中
        {
          //生成新的节点
          Successor = ( NODE* )calloc(1,sizeof( NODE ));
          Successor->Parent = BestNode;
          Successor->g = g;
          Successor->h = (x-dx)*(x-dx) + (y-dy)*(y-dy); // should do sqrt(), but since we
                                   don't really
          Successor->f = g+Successor->h; // care about the distance but just which branch
          looks Successor->x = x; // better this should suffice. Anyayz it's faster.
          Successor->y = y;
          Successor->NodeNum = TileNumS;
          //再插入Open表中,同时排序。
          Insert(Successor); // Insert Successor on OPEN list wrt f
          for( c =0; c <8; c++)
            if ( BestNode->Child[c] == NULL ) // Add Old to the list of BestNode's
                              Children (or Successors).
            break;
          BestNode->Child[c] = Successor;
        }
  }

  哈哈。A*算法我懂了。当然,我希望你有这样的感觉。不过我还要再说几句。仔细看看这个程序,你会发现,这个程序和我前面说的伪程序有一些不同,在GenerateSucc函数中,当子节点在Closed表中时,没有将子节点从Closed表中删除并放入Open表中。而是直接的重新的计算该节点的所有子节点的估价值(用PropagateDown函数)。这样可以快一些。另当子节点在Open表和Closed表中时,重新的计算估价值后,没有重新的对Open表中的节点排序,我有些想不通,为什么不排呢?会不会是一个小小的BUG。你知道告诉我好吗?
  好了。主要的内容都讲完了,还是完整仔细的看看源程序吧。希望我所的对你有一点帮助,一点点也可以。如果你对文章中的观点有异议或有更好的解释都告诉我。
分享到:
评论

相关推荐

    漫画作品与时间旅行题材.doc

    漫画作品与时间旅行题材

    基于SpringBoot框架的的在线视频教育平台的设计与实现(含完整源码+完整毕设文档+PPT+数据库文件).zip

    Spring Boot特点: 1、创建一个单独的Spring应用程序; 2、嵌入式Tomcat,无需部署WAR文件; 3、简化Maven配置; 4、自动配置Spring; 5、提供生产就绪功能,如指标,健康检查和外部配置; 6、绝对没有代码生成和XML的配置要求;第一章 绪 论 1 1.1背景及意义 1 1.2国内外研究概况 2 1.3 研究的内容 2 第二章 关键技术的研究 3 2.1 相关技术 3 2.2 Java技术 3 2.3 ECLIPSE 开发环境 4 2.4 Tomcat介绍 4 2.5 Spring Boot框架 5 第三章 系统分析 5 3.1 系统设计目标 6 3.2 系统可行性分析 6 3.3 系统功能分析和描述 7 3.4系统UML用例分析 8 3.4.1管理员用例 9 3.4.2用户用例 9 3.5系统流程分析 10 3.5.1添加信息流程 11 3.5.2操作流程 12 3.5.3删除信息流程 13 第四章 系统设计 14 4.1 系统体系结构 15 4.2 数据库设计原则 16 4.3 数据表 17 第五章 系统实现 18 5.1用户功能模块 18 5.2

    PyTorch入门指南:从零开始掌握深度学习框架.pdf

    内容概要:本文作为PyTorch的入门指南,首先介绍了PyTorch相较于TensorFlow的优势——动态计算图、自动微分和丰富API。接着讲解了环境搭建、PyTorch核心组件如张量(Tensor)、autograd模块以及神经网络的定义方式(如nn.Module),并且给出了详细的神经网络训练流程,包括前向传播、计算损失值、进行反向传播以计算梯度,最终调整权重参数。此外还简要提及了一些拓展资源以便进一步探索这个深度学习工具。 适用人群:初次接触深度学习技术的新学者和技术爱好者,有一定程序基础并希望通过PyTorch深入理解机器学习算法实现的人。 使用场景及目标:该文档有助于建立使用者对于深度学习及其具体实践有更加直观的理解,在完成本教程之后,读者应当能够在个人设备上正确部署Python环境,并依据指示独立创建自己的简易深度学习项目。 其他说明:文中所提及的所有示例均可被完整重现,同时官方提供的资料链接也可以方便有兴趣的人士对感兴趣之处继续挖掘,这不仅加深了对PyTorch本身的熟悉程度,也为未来的研究或者工程项目打下了良好的理论基础和实践经验。

    古镇美食自驾游:舌尖上的历史韵味.doc

    古镇美食自驾游:舌尖上的历史韵味

    基于人工神经网络(ANN)的高斯白噪声的系统识别 附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    漫画作品与神话传说融合.doc

    漫画作品与神话传说融合

    实时电价机制下交直流混合微网优化运行方法 附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    ADC推理软件AI程序

    ADC推理软件AI程序

    漫画作品与科幻元素融合.doc

    漫画作品与科幻元素融合

    【电缆】中压电缆局部放电的传输模型研究 附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    基于人工神经网络的类噪声环境声音声学识别 附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    多约束、多车辆VRP问题 附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    基于麻雀搜索算法(SSA)优化长短期记忆神经网络参数SSA-LSTM冷、热、电负荷预测 附Python代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    java-springboot+vue景区民宿预约系统实现源码(完整前后端+mysql+说明文档+LunW+PPT).zip

    java-springboot+vue景区民宿预约系统实现源码(完整前后端+mysql+说明文档+LunW+PPT).zip

    56页-智慧园区解决方案(伟景行).pdf

    在智慧城市建设的大潮中,智慧园区作为其中的璀璨明珠,正以其独特的魅力引领着产业园区的新一轮变革。想象一下,一个集绿色、高端、智能、创新于一体的未来园区,它不仅融合了科技研发、商业居住、办公文创等多种功能,更通过深度应用信息技术,实现了从传统到智慧的华丽转身。 智慧园区通过“四化”建设——即园区运营精细化、园区体验智能化、园区服务专业化和园区设施信息化,彻底颠覆了传统园区的管理模式。在这里,基础设施的数据收集与分析让管理变得更加主动和高效,从温湿度监控到烟雾报警,从消防水箱液位监测到消防栓防盗水装置,每一处细节都彰显着智能的力量。而远程抄表、空调和变配电的智能化管控,更是在节能降耗的同时,极大地提升了园区的运维效率。更令人兴奋的是,通过智慧监控、人流统计和自动访客系统等高科技手段,园区的安全防范能力得到了质的飞跃,让每一位入驻企业和个人都能享受到“拎包入住”般的便捷与安心。 更令人瞩目的是,智慧园区还构建了集信息服务、企业服务、物业服务于一体的综合服务体系。无论是通过园区门户进行信息查询、投诉反馈,还是享受便捷的电商服务、法律咨询和融资支持,亦或是利用云ERP和云OA系统提升企业的管理水平和运营效率,智慧园区都以其全面、专业、高效的服务,为企业的发展插上了腾飞的翅膀。而这一切的背后,是大数据、云计算、人工智能等前沿技术的深度融合与应用,它们如同智慧的大脑,让园区的管理和服务变得更加聪明、更加贴心。走进智慧园区,就像踏入了一个充满无限可能的未来世界,这里不仅有科技的魅力,更有生活的温度,让人不禁对未来充满了无限的憧憬与期待。

    边境自驾游异国风情深度体验.doc

    边境自驾游异国风情深度体验

    武汉东湖高新集团智慧园区 22页PPT(21页).pptx

    在智慧城市建设的大潮中,智慧园区作为其中的璀璨明珠,正以其独特的魅力引领着产业园区的新一轮变革。想象一下,一个集绿色、高端、智能、创新于一体的未来园区,它不仅融合了科技研发、商业居住、办公文创等多种功能,更通过深度应用信息技术,实现了从传统到智慧的华丽转身。 智慧园区通过“四化”建设——即园区运营精细化、园区体验智能化、园区服务专业化和园区设施信息化,彻底颠覆了传统园区的管理模式。在这里,基础设施的数据收集与分析让管理变得更加主动和高效,从温湿度监控到烟雾报警,从消防水箱液位监测到消防栓防盗水装置,每一处细节都彰显着智能的力量。而远程抄表、空调和变配电的智能化管控,更是在节能降耗的同时,极大地提升了园区的运维效率。更令人兴奋的是,通过智慧监控、人流统计和自动访客系统等高科技手段,园区的安全防范能力得到了质的飞跃,让每一位入驻企业和个人都能享受到“拎包入住”般的便捷与安心。 更令人瞩目的是,智慧园区还构建了集信息服务、企业服务、物业服务于一体的综合服务体系。无论是通过园区门户进行信息查询、投诉反馈,还是享受便捷的电商服务、法律咨询和融资支持,亦或是利用云ERP和云OA系统提升企业的管理水平和运营效率,智慧园区都以其全面、专业、高效的服务,为企业的发展插上了腾飞的翅膀。而这一切的背后,是大数据、云计算、人工智能等前沿技术的深度融合与应用,它们如同智慧的大脑,让园区的管理和服务变得更加聪明、更加贴心。走进智慧园区,就像踏入了一个充满无限可能的未来世界,这里不仅有科技的魅力,更有生活的温度,让人不禁对未来充满了无限的憧憬与期待。

    ,,CAD、DXF导图,自动进行位置路径规划,源码可进行简单功能添加实现设备所需功能,已经在冲孔机,点胶机上应用,性价比超高 打孔机实测一分钟1400个孔 ,CAD、DXF导图;自动位置路径规划;源

    ,,CAD、DXF导图,自动进行位置路径规划,源码可进行简单功能添加实现设备所需功能,已经在冲孔机,点胶机上应用,性价比超高。 打孔机实测一分钟1400个孔 ,CAD、DXF导图;自动位置路径规划;源码功能添加;设备功能实现;冲孔机点胶机应用;高性价比。,CAD导图DXF,自动规划位置路径,实测打孔速度惊人!性价比超高冲孔机实现多功能定制

    一种鲁棒的可变功率分数LMS算法研究 附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    本地部署,LM Studio,可以让大家本地部署在自己家里的电脑deepseek,再也不用忍受网站上deepseek的服务器繁忙的烦恼

    本地部署,LM Studio,可以让大家本地部署在自己家里的电脑deepseek,再也不用忍受网站上deepseek的服务器繁忙的烦恼

Global site tag (gtag.js) - Google Analytics