- 浏览: 2595386 次
文章分类
最新评论
-
rasonyang:
要早点更换,我也不至于 现在 用 freeswitch。 c ...
asterisk 终于要替换SIP协议栈了 -
redhacker:
你好,博主!你安装后破解了吗?
IBM RSA (IBM rational software architect ) V8 学习之一 安装 -
canghaifuyun1987:
lz 我来关注下你呗,写的好
Spring Aop例子(实现接口) -
zhaoshijie:
请问 这种方式可以拦截到目标方法:ClassPathXmlAp ...
Spring3.0中的AOP注解配置 -
jiji87432:
谢谢分享,有很大帮助。
post和get的区别
rt-thread的小内存管理算法分析
rt-thread的小内存管理是rt-thread操作系统默认堆内存管理算法,是一种简单的内存分配算法,当有可用的内存的时候,会从中分割一块来作为分配的内存,而剩下的则返回到动态内存堆中.此算法采用了一个静态链表来实现的,其源码文件在根目录下的src目录下,包含mem.c和mem.h两个文件.
1 数据结构
小内存管理算法将内存看成是一个个内存块:
struct heap_mem { /* magic and used flag */ rt_uint16_t magic; //如果此内存块被分配了,则置0x1ea0,以此标志此块内存是正常分配出来的,而不是非法指针 rt_uint16_t used; //0:未分配;1:已分配 rt_size_t next, prev; //前一内存块,后一内存块 };此结构为一个内存块控制结构的定义.
2 初始化动态内存堆
/** * @ingroup SystemInit * * This function will init system heap * * @param begin_addr the beginning address of system page * @param end_addr the end address of system page */ void rt_system_heap_init(void *begin_addr, void *end_addr) //函数传入用为初始化的起始地址和末尾地址,但这两个地址有可能并非对齐的 { struct heap_mem *mem; rt_uint32_t begin_align = RT_ALIGN((rt_uint32_t)begin_addr, RT_ALIGN_SIZE); //得到对齐后的堆内存起始地址 rt_uint32_t end_align = RT_ALIGN_DOWN((rt_uint32_t)end_addr, RT_ALIGN_SIZE); //得到对齐后的堆内存末尾地址 RT_DEBUG_NOT_IN_INTERRUPT; //确保此函数不是运行在中断例程内 /* alignment addr */ if ((end_align > (2 * SIZEOF_STRUCT_MEM)) && //确保可用动态堆内存大小至少大于可等于2个内存块控制结构大小 ((end_align - 2 * SIZEOF_STRUCT_MEM) >= begin_align)) { /* calculate the aligned memory size */ mem_size_aligned = end_align - begin_align - 2 * SIZEOF_STRUCT_MEM; //计算出可用的真实可用作动态分配的内存大小 } else { rt_kprintf("mem init, error begin address 0x%x, and end address 0x%x\n", (rt_uint32_t)begin_addr, (rt_uint32_t)end_addr); return; } /* point to begin address of heap */ heap_ptr = (rt_uint8_t *)begin_align; //heap_ptr为静态全局变量,指用堆内存起始地址 RT_DEBUG_LOG(RT_DEBUG_MEM, ("mem init, heap begin address 0x%x, size %d\n", (rt_uint32_t)heap_ptr, mem_size_aligned)); /* initialize the start of the heap */ mem = (struct heap_mem *)heap_ptr; //将动态堆内存首地址初始化为一个内存块,可用大小为全部可用大小 mem->magic = HEAP_MAGIC; //初始化为0x1ea0 mem->next = mem_size_aligned + SIZEOF_STRUCT_MEM; //下一个指向动态堆内存最靠末尾的内存控制结构 mem->prev = 0; //无前一个内存块 mem->used = 0; //初始化为未使用 /* initialize the end of the heap */ heap_end = (struct heap_mem *)&heap_ptr[mem->next]; //指向末尾内存块 heap_end->magic = HEAP_MAGIC; heap_end->used = 1; //末尾内存块初始化为已使用 heap_end->next = mem_size_aligned + SIZEOF_STRUCT_MEM; //下一个内存块指向自己 heap_end->prev = mem_size_aligned + SIZEOF_STRUCT_MEM; //前一个内存块也指向自己 rt_sem_init(&heap_sem, "heap", 1, RT_IPC_FLAG_FIFO); //初始化堆内存信号量为1 /* initialize the lowest-free pointer to the start of the heap */ lfree = (struct heap_mem *)heap_ptr; //lfree为空闲内存,为静态全局变量,初始化时指向动态堆内存首地址 }
由上述代码可知,在初始化时,小内存管理算法通过传进来的起始地址和末尾地址将动态堆内存初始化为两个内存块,第一个内存块指向动态堆内存首地址,可用空间为整个可分配的内存(不包含两个内存控制块本身所占大小),此内存块下一指针指向末尾内存控制块.第二个内存块指向最末尾的一个内存控制块,可用空间大小为0,此内存块前一指针和后一指针都指向本身.
2 分配内存
2.1 malloc
/** * Allocate a block of memory with a minimum of 'size' bytes. * * @param size is the minimum size of the requested block in bytes. * * @return pointer to allocated memory or NULL if no free memory was found. */ void *rt_malloc(rt_size_t size) //分配内存接口 { rt_size_t ptr, ptr2; struct heap_mem *mem, *mem2; RT_DEBUG_NOT_IN_INTERRUPT; //确保此函数不是在中断例程内执行 if (size == 0) //如果指定分配的大小为0则直接返回NULL return RT_NULL; if (size != RT_ALIGN(size, RT_ALIGN_SIZE)) RT_DEBUG_LOG(RT_DEBUG_MEM, ("malloc size %d, but align to %d\n", size, RT_ALIGN(size, RT_ALIGN_SIZE))); else RT_DEBUG_LOG(RT_DEBUG_MEM, ("malloc size %d\n", size)); /* alignment size */ size = RT_ALIGN(size, RT_ALIGN_SIZE); //传入的size不一定是对齐的数据民,因此,这里只取对齐后的大小 if (size > mem_size_aligned) //如果指定大小比整个可用空间都要大,则直接返回NULL { RT_DEBUG_LOG(RT_DEBUG_MEM, ("no memory\n")); return RT_NULL; } /* every data block must be at least MIN_SIZE_ALIGNED long */ //如果指定大小不得小于MN_SIZE_ALIGNED,即12 if (size < MIN_SIZE_ALIGNED) size = MIN_SIZE_ALIGNED; /* take memory semaphore */ rt_sem_take(&heap_sem, RT_WAITING_FOREVER); //获得堆信号量,从第1章,已知初始化时已将此信号量初始为1,因此,若第一次是可以成功获取 for (ptr = (rt_uint8_t *)lfree - heap_ptr; //扫描内存空闲链表 ptr < mem_size_aligned - size; ptr = ((struct heap_mem *)&heap_ptr[ptr])->next) { mem = (struct heap_mem *)&heap_ptr[ptr]; //mem指向空闲节点 if ((!mem->used) && (mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size) //如果当前内存块未分配且大小足够 { /* mem is not used and at least perfect fit is possible: * mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */ if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >= //如果当前内存块大小比需求还大,剩余空间还有可能分配另一内存块时 (size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED)) { /* (in addition to the above, we test if another struct heap_mem (SIZEOF_STRUCT_MEM) containing * at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem') * -> split large block, create empty remainder, * remainder must be large enough to contain MIN_SIZE_ALIGNED data: if * mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size, * struct heap_mem would fit in but no data between mem2 and mem2->next * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty * region that couldn't hold data, but when mem->next gets freed, * the 2 regions would be combined, resulting in more free memory */ ptr2 = ptr + SIZEOF_STRUCT_MEM + size; //将此内存块分割成两块,ptr2指向后一块 /* create mem2 struct */ mem2 = (struct heap_mem *)&heap_ptr[ptr2]; mem2->used = 0; mem2->next = mem->next; mem2->prev = ptr; /* and insert it between mem and mem->next */ //更新当前块的后指针指向分割后另一块内存块 mem->next = ptr2; mem->used = 1; //当前内存块被分配,标志置1 if (mem2->next != mem_size_aligned + SIZEOF_STRUCT_MEM) //如果分割后的内存块不是末尾,则将其后指针指向自己 { ((struct heap_mem *)&heap_ptr[mem2->next])->prev = ptr2; } #ifdef RT_MEM_STATS used_mem += (size + SIZEOF_STRUCT_MEM); //更新总共已分配的内存块大小,便于统计 if (max_mem < used_mem) max_mem = used_mem; #endif } else //如果当前内存块只够本次分配时 { /* (a mem2 struct does no fit into the user data space of mem and mem->next will always * be used at this point: if not we have 2 unused structs in a row, plug_holes should have * take care of this). * -> near fit or excact fit: do not split, no mem2 creation * also can't move mem->next directly behind mem, since mem->next * will always be used at this point! */ mem->used = 1; //置已分配标志 #ifdef RT_MEM_STATS used_mem += mem->next - ((rt_uint8_t*)mem - heap_ptr); if (max_mem < used_mem) max_mem = used_mem; #endif } /* set memory block magic */ mem->magic = HEAP_MAGIC; if (mem == lfree) //如果空闲内存链表头刚好指向当前内存块 { /* Find next free block after mem and update lowest free pointer */ while (lfree->used && lfree != heap_end) //则更新空闲链表指向下一个空闲内存块 lfree = (struct heap_mem *)&heap_ptr[lfree->next]; RT_ASSERT(((lfree == heap_end) || (!lfree->used))); //空闲链表不能指向堆内存末尾或空闲链表指向的内存块有使用标志为已分配 } rt_sem_release(&heap_sem); //释放信号量,保证另一分配函数可以运行 RT_ASSERT((rt_uint32_t)mem + SIZEOF_STRUCT_MEM + size <= (rt_uint32_t)heap_end); RT_ASSERT((rt_uint32_t)((rt_uint8_t *)mem + SIZEOF_STRUCT_MEM) % RT_ALIGN_SIZE == 0); RT_ASSERT((((rt_uint32_t)mem) & (RT_ALIGN_SIZE-1)) == 0); RT_DEBUG_LOG(RT_DEBUG_MEM, ("allocate memory at 0x%x, size: %d\n", (rt_uint32_t)((rt_uint8_t *)mem + SIZEOF_STRUCT_MEM), (rt_uint32_t)(mem->next - ((rt_uint8_t *)mem - heap_ptr)))); RT_OBJECT_HOOK_CALL(rt_malloc_hook, (((void *)((rt_uint8_t *)mem + SIZEOF_STRUCT_MEM)), size)); /* return the memory data except mem struct */ return (rt_uint8_t *)mem + SIZEOF_STRUCT_MEM; //返回当前内存块的可用内存地址,前面大小为SIZE_STRUCT_MEM的空间表示内存块控制结构所占空间,是不能拿来用的 } } rt_sem_release(&heap_sem); return RT_NULL; //所有空闲链表上的内存块都不符合,则返回NULL }
2.2 realloc
/** * This function will change the previously allocated memory block. * * @param rmem pointer to memory allocated by rt_malloc * @param newsize the required new size * * @return the changed memory block address */ void *rt_realloc(void *rmem, rt_size_t newsize) { rt_size_t size; rt_size_t ptr, ptr2; struct heap_mem *mem, *mem2; void *nmem; RT_DEBUG_NOT_IN_INTERRUPT; //确保此函数不是在中断例程中使用 /* alignment size */ newsize = RT_ALIGN(newsize, RT_ALIGN_SIZE);//得到对齐后的重新分配的大小 if (newsize > mem_size_aligned)//如果超过上限,则直接返回NULL { RT_DEBUG_LOG(RT_DEBUG_MEM, ("realloc: out of memory\n")); return RT_NULL; } /* allocate a new memory block */ if (rmem == RT_NULL)//如果传入的参数为空,则为分配好内存则返回 return rt_malloc(newsize); rt_sem_take(&heap_sem, RT_WAITING_FOREVER);//尝试获取信号量 if ((rt_uint8_t *)rmem < (rt_uint8_t *)heap_ptr || //如果原先的内存指针不在合法范围内,则原样返回原先的内存指针 (rt_uint8_t *)rmem >= (rt_uint8_t *)heap_end) { /* illegal memory */ rt_sem_release(&heap_sem); return rmem; } mem = (struct heap_mem *)((rt_uint8_t *)rmem - SIZEOF_STRUCT_MEM);//得到对应的内存块指针 ptr = (rt_uint8_t *)mem - heap_ptr; //得到当前指针到内存堆首地址的偏移 size = mem->next - ptr - SIZEOF_STRUCT_MEM; //得到当前内存块的总共可用空间 if (size == newsize) //如果当前指针可用内存本身就等于重新需要分配的大小,则不必再重新分配,原样返回即可 { /* the size is the same as */ rt_sem_release(&heap_sem); return rmem; } if (newsize + SIZEOF_STRUCT_MEM + MIN_SIZE < size) //如果当前指针所指向的内存块本身就比重新要分配的大小还大,且还有至少一个MIN_SIZE的剩余则分割当前内存块 { /* split memory block */ #ifdef RT_MEM_STATS used_mem -= (size - newsize); //刷新已使用的内存大小 #endif ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize;//ptr2指向分割后的第二块内存 mem2 = (struct heap_mem *)&heap_ptr[ptr2];//转化为内存块,mem2即为第二块内存块 mem2->magic= HEAP_MAGIC;//置maigc mem2->used = 0;//置未使用标志 mem2->next = mem->next;//更新next mem2->prev = ptr; mem->next = ptr2;//当前内存块的下一块指向ptr2 if (mem2->next != mem_size_aligned + SIZEOF_STRUCT_MEM)//如果分割后的第二块内存块的下一指针不是指向内存堆最后一块 { ((struct heap_mem *)&heap_ptr[mem2->next])->prev = ptr2;//则将下块内存块的前指针指向自己 } plug_holes(mem2);//将分割后的第二块内存尝试与左右内存块合并 rt_sem_release(&heap_sem); return rmem;//原样返回指针 } rt_sem_release(&heap_sem); /* expand memory */ nmem = rt_malloc(newsize);//如果当前内存块本身可用内存确实不足,则重新分配一块内存 if (nmem != RT_NULL) /* check memory */ { rt_memcpy(nmem, rmem, size < newsize ? size : newsize); //将原内存块的数据原样复制到新内存块中 rt_free(rmem);//将原内存块释放 } return nmem;//返回新内存块 }
需要注意的是,上述代码中,如果当前内存块可用内存比较充裕时,将分割成两块,后一块侵害出来后会尝试与前后内存块合并,这合并的代友后续章节将会介绍其过程.
2.3 calloc
/** * This function will contiguously allocate enough space for count objects * that are size bytes of memory each and returns a pointer to the allocated * memory. * * The allocated memory is filled with bytes of value zero. * * @param count number of objects to allocate * @param size size of the objects to allocate * * @return pointer to allocated memory / NULL pointer if there is an error */ void *rt_calloc(rt_size_t count, rt_size_t size) { void *p; RT_DEBUG_NOT_IN_INTERRUPT;//防止此函数在中断例程中使用 /* allocate 'count' objects of size 'size' */ p = rt_malloc(count * size); //分配内存 /* zero the memory */ if (p) rt_memset(p, 0, count * size);//初始化分配好的内存内容全部为0 return p; }
3 free
/** * This function will release the previously allocated memory block by * rt_malloc. The released memory block is taken back to system heap. * * @param rmem the address of memory which will be released */ void rt_free(void *rmem) { struct heap_mem *mem; RT_DEBUG_NOT_IN_INTERRUPT;//防止此函数在中断例程中使用 if (rmem == RT_NULL) return; RT_ASSERT((((rt_uint32_t)rmem) & (RT_ALIGN_SIZE-1)) == 0);//断言输入参数是否对齐 RT_ASSERT((rt_uint8_t *)rmem >= (rt_uint8_t *)heap_ptr && //断言输入参数是否在合法范围内 (rt_uint8_t *)rmem < (rt_uint8_t *)heap_end); RT_OBJECT_HOOK_CALL(rt_free_hook, (rmem));//使用钩子函数 if ((rt_uint8_t *)rmem < (rt_uint8_t *)heap_ptr || //如果输入参数范围不合法,则直接返回 (rt_uint8_t *)rmem >= (rt_uint8_t *)heap_end) { RT_DEBUG_LOG(RT_DEBUG_MEM, ("illegal memory\n")); return; } /* Get the corresponding struct heap_mem ... */ mem = (struct heap_mem *)((rt_uint8_t *)rmem - SIZEOF_STRUCT_MEM);//获取对应内存块指针 RT_DEBUG_LOG(RT_DEBUG_MEM, ("release memory 0x%x, size: %d\n", (rt_uint32_t)rmem, (rt_uint32_t)(mem->next - ((rt_uint8_t *)mem - heap_ptr)))); /* protect the heap from concurrent access */ rt_sem_take(&heap_sem, RT_WAITING_FOREVER); /* ... which has to be in a used state ... */ RT_ASSERT(mem->used); //断言当前内存块被使用 RT_ASSERT(mem->magic == HEAP_MAGIC);//断言当前内存块是之前被分配出来的 /* ... and is now unused. */ mem->used = 0; mem->magic = 0; if (mem < lfree)//放入空闲链表 { /* the newly freed struct is now the lowest */ lfree = mem; } #ifdef RT_MEM_STATS used_mem -= (mem->next - ((rt_uint8_t*)mem - heap_ptr));//更新已使用的内存大小 #endif /* finally, see if prev or next are free also */ plug_holes(mem); //尝试合并内存 rt_sem_release(&heap_sem); }
合并内存块的代码如下:
static void plug_holes(struct heap_mem *mem) { struct heap_mem *nmem; struct heap_mem *pmem; RT_ASSERT((rt_uint8_t *)mem >= heap_ptr);//断言当前输入参数有合法范围 RT_ASSERT((rt_uint8_t *)mem < (rt_uint8_t *)heap_end); RT_ASSERT(mem->used == 0);//断言当前内存未使用 /* plug hole forward */ //其下代码是尝试向后合并 nmem = (struct heap_mem *)&heap_ptr[mem->next];//指向下一内存块 if (mem != nmem && //如果存在下一内存块,且同样未使用,并且下一内存块不是指向堆内存末尾 nmem->used == 0 && (rt_uint8_t *)nmem != (rt_uint8_t *)heap_end) { /* if mem->next is unused and not end of heap_ptr, * combine mem and mem->next */ if (lfree == nmem)//如果空闲内存指向下一内存块 { lfree = mem;//则将空闲内存指向当前内存块 } mem->next = nmem->next;//合并 ((struct heap_mem *)&heap_ptr[nmem->next])->prev = (rt_uint8_t *)mem - heap_ptr; } /* plug hole backward */ //其下代码是尝试向前合并 pmem = (struct heap_mem *)&heap_ptr[mem->prev];//指向前一内存块 if (pmem != mem && pmem->used == 0)//如果存在前一内存块且未使用 { /* if mem->prev is unused, combine mem and mem->prev */ if (lfree == mem)//如果空闲内存指向前一内存,则将空闲内存指向它 { lfree = pmem; } pmem->next = mem->next;//合并 ((struct heap_mem *)&heap_ptr[mem->next])->prev = (rt_uint8_t *)pmem - heap_ptr; } }
至此,小内存算法的源码分析完了,从上述可知,小内存管理算法从整体上来讲,是将一片内存初始化为静态链表来实现的,初始化时只有两个内存块,第一块除了包含内存块控制块外,还包含待分配的空间,这个空间就是mem_size_aligned,它是指此算法可用来作分配的动态堆内存总大小,任何待分配的内存都不能比它还大,否则超时极限;第二块只包含内存控制块本身,不包含待分配的空间,它作为链表尾,且标志恒使用.此算法中还有一空闲指针,指向空闲的内存,初始化时指向第一内块.接下来就是分配内存了,分配内存时首先从空闲内存所指向的节点开始扫描,一旦扫描到大小满足的节点,则返回此节点,另当此节点所指向的空间足够大,大到还有足够空间分配另一空间时,则侵害此节点指向的内存为两块,前一内存返回,后一内存放入空闲链表中; 当释放内存时,算法将检查待释放内存的前一内存块和后一内存块,如果为空闲则合并.
至此完!
相关推荐
4. 内存管理:rt-thread提供了动态内存分配和释放的机制,如内存池管理和堆内存管理,以满足不同规模应用的需求。 二、rt-thread内核组件详解 1. 信号量:信号量用于资源的互斥访问控制,可以是二进制或计数型,...
RT-Thread是一个开源、实时、高性能的嵌入式操作系统,被广泛应用在物联网设备上。LWIP(Lightweight IP)是其内置的一个轻量级TCP/IP协议栈,它为资源有限的嵌入式设备提供了完整的网络功能。在RT-Thread环境中进行...
可能包含了更高级的调度算法、内存管理策略或者其他增强功能,以适应USB-Host的需求。 总的来说,这个压缩包提供的内容可以帮助开发者了解如何在RT-Thread上进行USB-Host功能的开发,同时也能学习到如何对GD25QXX...
4. 内存管理:RT-Thread提供了静态和动态内存分配方案,支持内存池管理,可以减少内存碎片,提升系统稳定性和效率。 5. 定时器:定时器用于周期性或一次性的时间控制操作,RT-Thread支持多个定时器的高效管理。 6....
- **初期阶段**:RT-Thread最初由一小群开发者创立,在发展初期面临诸多挑战,包括技术难题和资源有限等问题。 - **Cortex-M3的变革**:随着ARM Cortex-M3架构的兴起,RT-Thread抓住了这一机遇,针对Cortex-M3进行了...
RT-Thread内核是整个系统的核心,它提供了任务调度、内存管理、信号量、互斥锁、消息队列、事件标志组等基本的实时操作系统服务。内核的设计注重效率和稳定性,支持抢占式调度和协同式调度,可以满足不同应用的需求...
- **轻量级**:RT-Thread占用的内存空间非常小,适用于资源受限的微控制器。 - **高可靠性**:经过多年的优化和完善,RT-Thread具有很高的稳定性和可靠性。 - **模块化设计**:支持按需加载各种组件,便于裁剪和定制...
RT-Thread使用优先级调度算法,确保高优先级任务优先执行。 6. **中断处理**:Cortex-M7处理器支持中断处理,中断服务例程可以在任务执行过程中被调用,快速响应硬件事件。合理地配置中断优先级和中断处理程序,能...
RT-Thread提供了稳定的多任务环境和丰富的API接口,使得开发者可以方便地创建和管理网络连接、音频解码以及播放控制等任务。其网络堆栈支持TCP/IP协议,能够进行HTTP或HTTPS等协议的网络通信,从而实现从互联网获取...
在本项目中,RT-THREAD扮演着核心角色,负责任务调度、时间管理、内存管理以及设备驱动等底层工作。 首先,我们需要了解RT-THREAD的系统架构。它由内核、组件和应用程序框架三部分组成。内核是基础,包括任务管理、...
它提供了线程管理、内存管理、设备驱动模型、网络协议栈、文件系统、图形用户界面等丰富的组件,使得开发者可以方便地在STM32上构建复杂的物联网应用。在这个项目中,RT-Thread可能已经被配置和定制,以适应空气净化...
利用RT-Thread的内存管理、信号量、互斥锁等机制,确保mbedtls的线程安全操作。 5. **mbedtls配置**:根据应用需求,配置mbedtls的SSL/TLS会话参数,包括证书、密钥、信任CA等。可能需要预先加载服务器的公钥证书,...
深入研究`String`类的源码,可以理解其不可变性、内存管理以及各种操作方法的实现细节,这对于优化代码性能至关重要。 2. **java.util**: 包含了各种实用工具类,如集合框架(ArrayList、LinkedList、HashMap等)、...
在这个项目中,RT-Thread被用来管理STM32F411CEU6的资源,提供线程调度、内存管理、设备驱动等功能,确保舵机控制的实时性和稳定性。 压缩包中的"shengyuandingwei-master"很可能包含了整个项目的源代码、配置文件...
JVM的类加载机制、内存管理、垃圾收集等都与rt.jar紧密相关。例如,Class类的实例在JVM中对应一个类的元数据,它由JVM在加载类时创建。 四、源码学习的价值 1. 性能优化:通过查看源码,开发者可以了解到类和方法的...
STM32-Copter-RTThread-code.zip是一个与嵌入式系统开发相关的压缩包,主要包含了一套基于STM32微控制器的无人机飞控源码,该源码使用了RT-Thread实时操作系统。这个项目专注于Windows平台上的C/C++编程,意味着...
它提供了任务调度、内存管理、中断处理、文件系统、网络协议栈等一系列服务,为开发人员提供了稳定可靠的运行环境。在本项目中,RT-Thread作为基础平台,为AT设备驱动程序提供了运行框架。 3. ATTCP协议栈:TCP/IP...
3. **高效的内存管理**:通过精心设计的数据结构和算法,LwIP在内存管理和缓冲区管理方面表现出色,确保了即使在资源极为有限的设备上也能稳定运行。 #### 协议层与实现 LwIP遵循TCP/IP协议族的分层设计原则,但在...
2. RTThread移植:将RTThread操作系统适配到STM32F411CEU6上,包括设置启动代码、初始化内存管理、配置中断处理等,使其能够在目标硬件上运行。 3. 应用开发:利用RTThread提供的API,编写应用程序,实现特定的...
RTThread则是一款轻量级、高效的开源RTOS,适合资源有限的嵌入式设备,它提供了任务调度、内存管理、定时器、互斥锁等基本功能,便于实现多任务并行处理。 【标签】:“基于STM32 毕设 课程作业 系统”这些标签...