`
jiagou
  • 浏览: 2595294 次
文章分类
社区版块
存档分类
最新评论

rt-thread的定时器管理源码分析

 
阅读更多

1 前言

rt-thread可以采用软件定时器或硬件定时器来实现定时器管理的,所谓软件定时器是指由操作系统提供的一类系统接口,它构建在硬件定时器基础之上,使系统能够提供不受数目限制的定时器服务。而硬件定时器是芯片本身提供的定时功能。一般是由外部晶振提供给芯片输入时钟,芯片向软件模块提供一组配置寄存器,接受控制输入,到达设定时间值后芯片中断控制器产生时钟中断。硬件定时器的精度一般很高,可以达到纳秒级别,并且是中断触发方式。软件定时器的精度取决于它使用的硬件定时器精度。而rt-thread操作系统在默认情况下是采用的硬件定时器的方式,用户可以通过修改宏定义#ifdef RT_USING_TIMER_SOFT来修改采用哪种。

2 rt-thread的定时器的基本工作原理

在RT-Thread定时器模块维护两个重要的全局变量,一个是当前系统的时间rt_tick(当硬件定时器中断来临时,它将加1),另一个是定时器链表rt_timer_list,系统中新创建的定时期都会被以排序的方式插入到rt_timer_list(硬件定时器模式下使用)链表中,rt_timer_list的每个节点保留了一个定时器的信息,并且在这个节点加入链表时就计算好了产生时间到达时的时间点,即tick,在rt-thread系统中如果采用软件定时器模式,则存在一定时器线程rt_thread_timer_entry,不断获取当前TICK值并与定时器链表rt_timer_list上的定时器对比判断是否时间已到,一旦发现就调用对应的回调函数,即事件处理函数进行处理,而如果采用硬件定时器管理模式的话,则该检查过程放到系统时钟中断例程中进行处理,此时,是不存在定时器线程的。如下图:注:如果采用软件定时器软件定时器,则该定时器链表为rt_soft_timer_list。

3 源码分析

3.1 数据定义

/**
 * timer structure
 */
struct rt_timer
{
    struct rt_object parent; //内核对象

    rt_list_t        list;      //链表节点

    void (*timeout_func)(void *parameter);  //定时器超时例程
    void            *parameter;       //定时器例程的传入参数

    rt_tick_t        init_tick;       //定时器的超时时间,即总共多长时间将产生超时事件
    rt_tick_t        timeout_tick;     //定时器超时的时间点,即产生超时事件时那一该的时间点
};
typedef struct rt_timer *rt_timer_t;

3.2 rt-thread的软件定时器模式

软件定时器线程初始化及启动:

/**
 * @ingroup SystemInit
 *
 * This function will initialize system timer thread
 */
void rt_system_timer_thread_init(void)
{
#ifdef RT_USING_TIMER_SOFT//如果采用软件定时器管理模式,则启动定时器线程
    rt_list_init(&rt_soft_timer_list);//初始化软件定时器链表

    /* start software timer thread */
    rt_thread_init(&timer_thread,//初始化软件定时器线程,并启动
                   "timer",
                   rt_thread_timer_entry,
                   RT_NULL,
                   &timer_thread_stack[0],
                   sizeof(timer_thread_stack),
                   RT_TIMER_THREAD_PRIO,
                   10);

    /* startup */
    rt_thread_startup(&timer_thread);
#endif
}

软件定时器线程如下:
/* system timer thread entry */
static void rt_thread_timer_entry(void *parameter)
{
    rt_tick_t next_timeout;
    
    while (1)
    {
        /* get the next timeout tick */
        next_timeout = rt_timer_list_next_timeout(&rt_soft_timer_list);//得到软件定时器链表上的下一个定时器的超时时间点
        if (next_timeout == RT_TICK_MAX)//如果超过范围,则挂起当前线程,继续线程调度
        {
            /* no software timer exist, suspend self. */
            rt_thread_suspend(rt_thread_self());
            rt_schedule();
        }
        else
        {
            rt_tick_t current_tick;

            /* get current tick */
            current_tick = rt_tick_get();//获取当前时间点

            if ((next_timeout - current_tick) < RT_TICK_MAX/2)//离下个中断时间点还差些时候
            {
                /* get the delta timeout tick */
                next_timeout = next_timeout - current_tick;//计算还差多长时间
                rt_thread_delay(next_timeout);//休眠一段时间
            }
        }

        /* lock scheduler */
        rt_enter_critical();//时间到,进入临界区
        /* check software timer */
        rt_soft_timer_check();//检查是否该产生超时事件
        /* unlock scheduler */
        rt_exit_critical();//退出临界区
    }
}

检查是否产生中断函数rt_soft_timer_check函数如下定义:
/**
 * This function will check timer list, if a timeout event happens, the
 * corresponding timeout function will be invoked.
 */
void rt_soft_timer_check(void)
{
    rt_tick_t current_tick;
    rt_list_t *n;
    struct rt_timer *t;

    RT_DEBUG_LOG(RT_DEBUG_TIMER, ("software timer check enter\n"));

    current_tick = rt_tick_get();//得到当前时间点

    for (n = rt_soft_timer_list.next; n != &(rt_soft_timer_list);)//得到下一定时器节点
    {
        t = rt_list_entry(n, struct rt_timer, list);//t指向rt_timer定时器

        /*
         * It supposes that the new tick shall less than the half duration of
         * tick max.
         */
        if ((current_tick - t->timeout_tick) < RT_TICK_MAX / 2)//如果当前的时间点超过定时器的超时时间点
        {
            RT_OBJECT_HOOK_CALL(rt_timer_timeout_hook, (t));//使用钩子函数

            /* move node to the next */
            n = n->next;//指向下一定时器

            /* remove timer from timer list firstly */
            rt_list_remove(&(t->list));//移除当前定时器

            /* call timeout function */
            t->timeout_func(t->parameter);//产生定时器超时事件,调用对应处理函数

            /* re-get tick */
            current_tick = rt_tick_get();//再次获取当前时间点

            RT_DEBUG_LOG(RT_DEBUG_TIMER, ("current tick: %d\n", current_tick));

            if ((t->parent.flag & RT_TIMER_FLAG_PERIODIC) &&//如果当前定时器是周期性定时器,则将其再次按序放入软件定时器链表
                (t->parent.flag & RT_TIMER_FLAG_ACTIVATED))
            {
                /* start it */
                t->parent.flag &= ~RT_TIMER_FLAG_ACTIVATED;//置标志为非激活状态
                rt_timer_start(t);//再次将定时器t放入软件定时器链表末尾
            }
            else
            {
                /* stop timer */
                t->parent.flag &= ~RT_TIMER_FLAG_ACTIVATED;//置标志为非激活状态
            }
        }
        else break; /* not check anymore */
    }

    RT_DEBUG_LOG(RT_DEBUG_TIMER, ("software timer check leave\n"));
}


上面代码中,为什么定时器里判断超时的条件是((current_tick - t→timeout_tick) < RT_TICK_MAX/2)?

因为系统时钟溢出后会自动回绕。取定时器比较最大值是定时器最大值的一半,即RT_TICK_MAX/2(在比较两个定时器值时,值是32位无符号数,相减运算将会自动回绕)。系统支持的定时器最大长度就是RT_TICK_MAX的一半:即248天(10ms/tick),124天(5ms/tick),24.5天(1ms/tick),以下内容相同道理。

其上rt_timer_start函数如下定义:

/**
 * This function will start the timer
 *
 * @param timer the timer to be started
 *
 * @return the operation status, RT_EOK on OK, -RT_ERROR on error
 */
rt_err_t rt_timer_start(rt_timer_t timer)
{
    struct rt_timer *t;
    register rt_base_t level;
    rt_list_t *n, *timer_list;

    /* timer check */
    RT_ASSERT(timer != RT_NULL);
    if (timer->parent.flag & RT_TIMER_FLAG_ACTIVATED)//如果传入的定时器已经激活,则直接返回错误
        return -RT_ERROR;

    RT_OBJECT_HOOK_CALL(rt_object_take_hook, (&(timer->parent)));//使用钩子函数

    /*
     * get timeout tick,
     * the max timeout tick shall not great than RT_TICK_MAX/2
     */
    RT_ASSERT(timer->init_tick < RT_TICK_MAX / 2);
    timer->timeout_tick = rt_tick_get() + timer->init_tick;//得到定时器超时的时间点

    /* disable interrupt */
    level = rt_hw_interrupt_disable();//关中断

#ifdef RT_USING_TIMER_SOFT//如果采用的是软件定时器管理模式,则将定时器加入到rt_soft_timer_list中
    if (timer->parent.flag & RT_TIMER_FLAG_SOFT_TIMER)
    {
        /* insert timer to soft timer list */
        timer_list = &rt_soft_timer_list;
    }
    else
#endif
    {
        /* insert timer to system timer list */
        timer_list = &rt_timer_list;
    }

    for (n = timer_list->next; n != timer_list; n = n->next)//将定时器按序加入到定时器链表中
    {
        t = rt_list_entry(n, struct rt_timer, list);
        
        /*
         * It supposes that the new tick shall less than the half duration of
         * tick max.
         */
        if ((t->timeout_tick - timer->timeout_tick) < RT_TICK_MAX / 2)
        {
            rt_list_insert_before(n, &(timer->list));//将定时器timer插入到t之前
            break;
        }
    }
    /* no found suitable position in timer list */
    if (n == timer_list)//没有找到合适的位置,则放到链表头
    {
        rt_list_insert_before(n, &(timer->list));
    }

    timer->parent.flag |= RT_TIMER_FLAG_ACTIVATED;//置定时器为激活状态

    /* enable interrupt */
    rt_hw_interrupt_enable(level);

#ifdef RT_USING_TIMER_SOFT
    if (timer->parent.flag & RT_TIMER_FLAG_SOFT_TIMER)//如果系统采用的是软件定时器管理模式,且软件定时器线程处理ready状态,则恢复此线程
    {
        /* check whether timer thread is ready */
        if (timer_thread.stat != RT_THREAD_READY)
        {
            /* resume timer thread to check soft timer */
            rt_thread_resume(&timer_thread);//恢复定时器线程
            rt_schedule();//开始线程调度
        }
    }
#endif

    return -RT_EOK;
}

软件定时器管理模式的源码分析完了,接下来介绍RTT的硬件定时器管理模式。

3.3 RTT的硬件定时器管理模式

硬件定时器管理模式顾名思义,就是说与硬件相关,因此,不用的MCU,其部分源码是不一样的,因为其要采用MCU的系统时钟中断例程来实现。

以STM32F2XX为例,先找到其启动汇编,位置在:RTT/bsp/stm32f2xx/Libraries/CMSIS/CM3/DeviceSupport/ST/STM32F2xx/startup/arm/startup_stm32f2xx.s

找到中断向量:

DCD     SysTick_Handler            ; SysTick Handler
这是系统时钟中断向量,再找到其中断例程实现:

在bsp/stm32f2xx/drivers/board.c文件中:

/**
 * This is the timer interrupt service routine.
 *
 */
void SysTick_Handler(void)//系统时钟中断例程
{
	/* enter interrupt */
	rt_interrupt_enter();

	rt_tick_increase();

	/* leave interrupt */
	rt_interrupt_leave();
}

其中rt_tick_increase函数在RTT/src/clock.c文件中的实现如下:
/**
 * This function will notify kernel there is one tick passed. Normally,
 * this function is invoked by clock ISR.
 */
void rt_tick_increase(void)
{
    struct rt_thread *thread;

    /* increase the global tick */
    ++ rt_tick;//全局rt_tick加1

    /* check time slice */
    thread = rt_thread_self();//得到当前正在运行的线程

    -- thread->remaining_tick;//纯种剩下时间减1
    if (thread->remaining_tick == 0)//如果线程剩余时间为0,即调度时间已到
    {
        /* change to initialized tick */
        thread->remaining_tick = thread->init_tick;//将线程剩余时间重新设置初始化值

        /* yield */
        rt_thread_yield();//调度时间到,切换到其它线程
    }

    /* check timer */
    rt_timer_check();//检查硬件定时器链表是否有定时器产生超时事件
}

其中rt_timer_check函数在RTT/src/timer.c文件中如下定义:
/**
 * This function will check timer list, if a timeout event happens, the
 * corresponding timeout function will be invoked.
 *
 * @note this function shall be invoked in operating system timer interrupt.
 */
void rt_timer_check(void)
{
    struct rt_timer *t;
    rt_tick_t current_tick;
    register rt_base_t level;

    RT_DEBUG_LOG(RT_DEBUG_TIMER, ("timer check enter\n"));

    current_tick = rt_tick_get();

    /* disable interrupt */
    level = rt_hw_interrupt_disable();

    while (!rt_list_isempty(&rt_timer_list))
    {
        t = rt_list_entry(rt_timer_list.next, struct rt_timer, list);

        /*
         * It supposes that the new tick shall less than the half duration of
         * tick max.
         */
        if ((current_tick - t->timeout_tick) < RT_TICK_MAX/2)
        {
            RT_OBJECT_HOOK_CALL(rt_timer_timeout_hook, (t));

            /* remove timer from timer list firstly */
            rt_list_remove(&(t->list));

            /* call timeout function */
            t->timeout_func(t->parameter);

            /* re-get tick */
            current_tick = rt_tick_get();

            RT_DEBUG_LOG(RT_DEBUG_TIMER, ("current tick: %d\n", current_tick));

            if ((t->parent.flag & RT_TIMER_FLAG_PERIODIC) &&
                (t->parent.flag & RT_TIMER_FLAG_ACTIVATED))
            {
                /* start it */
                t->parent.flag &= ~RT_TIMER_FLAG_ACTIVATED;
                rt_timer_start(t);
            }
            else
            {
                /* stop timer */
                t->parent.flag &= ~RT_TIMER_FLAG_ACTIVATED;
            }
        }
        else
            break;
    }

    /* enable interrupt */
    rt_hw_interrupt_enable(level);

    RT_DEBUG_LOG(RT_DEBUG_TIMER, ("timer check leave\n"));
}

此函数与rt_soft_timer_check基本大致相同,只不过一个是查找硬件定时器链表rt_timer_list,一个是查找rt_soft_timer_list.

在此,硬件定时器管理模式基本上介绍完毕,接下来介绍一些定时器接口.

4 定时器接口

4.1 定时器初始化

静态初始化定义器

/**
 * This function will initialize a timer, normally this function is used to
 * initialize a static timer object.
 *
 * @param timer the static timer object
 * @param name the name of timer
 * @param timeout the timeout function
 * @param parameter the parameter of timeout function
 * @param time the tick of timer
 * @param flag the flag of timer
 */
void rt_timer_init(rt_timer_t  timer,
                   const char *name,
                   void (*timeout)(void *parameter),
                   void       *parameter,
                   rt_tick_t   time,
                   rt_uint8_t  flag)
{
    /* timer check */
    RT_ASSERT(timer != RT_NULL);

    /* timer object initialization */
    rt_object_init((rt_object_t)timer, RT_Object_Class_Timer, name);//初始化内核对象

    _rt_timer_init(timer, timeout, parameter, time, flag);
}

_rt_timer_init函数如下定义:
static void _rt_timer_init(rt_timer_t timer,
                           void (*timeout)(void *parameter),
                           void      *parameter,
                           rt_tick_t  time,
                           rt_uint8_t flag)
{
    /* set flag */
    timer->parent.flag  = flag;//置flag

    /* set deactivated */
    timer->parent.flag &= ~RT_TIMER_FLAG_ACTIVATED;//初始化时,设置为非激活状态

    timer->timeout_func = timeout;//设置超时事件处理函数
    timer->parameter    = parameter;//超时事件处理函数的传入参数

    timer->timeout_tick = 0;//定时器的超时时间点初始化时为0
    timer->init_tick    = time;//置超时时间

    /* initialize timer list */
    rt_list_init(&(timer->list));//初始化本身节点
}

动态创建定时器

/**
 * This function will create a timer
 *
 * @param name the name of timer
 * @param timeout the timeout function
 * @param parameter the parameter of timeout function
 * @param time the tick of timer
 * @param flag the flag of timer
 *
 * @return the created timer object
 */
rt_timer_t rt_timer_create(const char *name,
                           void (*timeout)(void *parameter),
                           void       *parameter,
                           rt_tick_t   time,
                           rt_uint8_t  flag)
{
    struct rt_timer *timer;

    /* allocate a object */
    timer = (struct rt_timer *)rt_object_allocate(RT_Object_Class_Timer, name);//动态分配定时器内核对象
    if (timer == RT_NULL)
    {
        return RT_NULL;
    }

    _rt_timer_init(timer, timeout, parameter, time, flag);//调用上述的初始化接口

    return timer;
}


4.2 脱离和删除

脱离:

/**
 * This function will detach a timer from timer management.
 *
 * @param timer the static timer object
 *
 * @return the operation status, RT_EOK on OK; RT_ERROR on error
 */
rt_err_t rt_timer_detach(rt_timer_t timer)
{
    register rt_base_t level;

    /* timer check */
    RT_ASSERT(timer != RT_NULL);

    /* disable interrupt */
    level = rt_hw_interrupt_disable();//关中断

    /* remove it from timer list */
    rt_list_remove(&(timer->list));//从定时器链表中移除

    /* enable interrupt */
    rt_hw_interrupt_enable(level);//开中断

    rt_object_detach((rt_object_t)timer);//脱离内核对象

    return -RT_EOK;
}

删除动态创建的定时器

/**
 * This function will delete a timer and release timer memory
 *
 * @param timer the timer to be deleted
 *
 * @return the operation status, RT_EOK on OK; RT_ERROR on error
 */
rt_err_t rt_timer_delete(rt_timer_t timer)
{
    register rt_base_t level;

    /* timer check */
    RT_ASSERT(timer != RT_NULL);

    /* disable interrupt */
    level = rt_hw_interrupt_disable();//关中断

    /* remove it from timer list */
    rt_list_remove(&(timer->list));//从定时器链表中移除

    /* enable interrupt */
    rt_hw_interrupt_enable(level);//开中断

    rt_object_delete((rt_object_t)timer);//删除动态创建的定时器内核对象

    return -RT_EOK;
}

4.3 启动定时器

/**
 * This function will start the timer
 *
 * @param timer the timer to be started
 *
 * @return the operation status, RT_EOK on OK, -RT_ERROR on error
 */
rt_err_t rt_timer_start(rt_timer_t timer)
此接口已在上面介绍软件定时器模式时已有分析,这里就不再重复了。

4.4 停止定时器

/**
 * This function will stop the timer
 *
 * @param timer the timer to be stopped
 *
 * @return the operation status, RT_EOK on OK, -RT_ERROR on error
 */
rt_err_t rt_timer_stop(rt_timer_t timer)
{
    register rt_base_t level;

    /* timer check */
    RT_ASSERT(timer != RT_NULL);
    if (!(timer->parent.flag & RT_TIMER_FLAG_ACTIVATED))//如果定时器已经为非激活状态
        return -RT_ERROR;

    RT_OBJECT_HOOK_CALL(rt_object_put_hook, (&(timer->parent)));//使用钩子函数

    /* disable interrupt */
    level = rt_hw_interrupt_disable();//关中断

    /* remove it from timer list */
    rt_list_remove(&(timer->list));//从定时器链表中移除

    /* enable interrupt */
    rt_hw_interrupt_enable(level);//开中断

    /* change stat */
    timer->parent.flag &= ~RT_TIMER_FLAG_ACTIVATED;//置非激活状态

    return RT_EOK;
}

4.5 控制

此接口是用来修改一个定时器的参数,如下代码:

/**
 * This function will get or set some options of the timer
 *
 * @param timer the timer to be get or set
 * @param cmd the control command
 * @param arg the argument
 *
 * @return RT_EOK
 */
rt_err_t rt_timer_control(rt_timer_t timer, rt_uint8_t cmd, void *arg)
{
    /* timer check */
    RT_ASSERT(timer != RT_NULL);

    switch (cmd)
    {
    case RT_TIMER_CTRL_GET_TIME://获取时间参数
        *(rt_tick_t *)arg = timer->init_tick;
        break;

    case RT_TIMER_CTRL_SET_TIME://修改时间参数
        timer->init_tick = *(rt_tick_t *)arg;
        break;

    case RT_TIMER_CTRL_SET_ONESHOT://修改定时器模式为单次触发定时器
        timer->parent.flag &= ~RT_TIMER_FLAG_PERIODIC;
        break;

    case RT_TIMER_CTRL_SET_PERIODIC://修改定时器为周期触发定时器
        timer->parent.flag |= RT_TIMER_FLAG_PERIODIC;
        break;
    }

    return RT_EOK;
}


完!


分享到:
评论

相关推荐

    RT-Thread 1.1.0 Alpha源码

    学习RT-Thread 1.1.0 Alpha源码,可以深入理解RTOS的设计思想,了解实时操作系统如何调度任务、管理资源,并从中获取对物联网设备软件开发的洞见。同时,通过对早期版本的分析,可以对比后续版本的改进,理解技术的...

    rt-thread内核源码

    《深入解析rt-thread内核源码》 rt-thread是一个开源、免费、实时性强、可裁剪的嵌入式操作系统内核,它具有轻量...通过对rt-thread内核源码的分析和实践,开发者可以更好地利用rt-thread构建高效、稳定的嵌入式应用。

    rt-thread-3.1.2.zip

    通过深入学习和分析RT-Thread v3.1.2的源码,开发者可以掌握实时操作系统的设计原理,理解如何在嵌入式系统中实现多任务调度、并发控制以及资源管理。这对于提升物联网设备的软件质量、提高开发效率具有重要意义。...

    正点原子-精英板F103-RT-Thread,正点原子开发板,C,C++

    RT-Thread还提供了RTOS分析工具,能帮助开发者监控系统运行状态,定位性能瓶颈。 7. 实战案例: 例如,可以创建一个简单的LED闪烁程序,通过RT-Thread创建两个任务,一个负责控制LED亮,另一个负责控制LED灭,通过...

    RT-thread+GD32F450+rtc.zip

    RT-Thread是一款开源、轻量级、高可扩展性的物联网操作系统,而GD32F450是基于ARM Cortex-M4内核的高性能MCU,内置了RTC模块,适用于需要精确时间管理的应用。 首先,让我们了解RTC的基本概念。RTC是一种硬件模块,...

    2-RT-Thread源码及官方参考资料.zip

    - **源码分析**:通过阅读和理解源码,掌握RTOS设计思想,进行定制和调试。 结合这些资料,开发者不仅可以深入学习RT-Thread,还能掌握基于Cortex-M3的单片机开发技能,从而在嵌入式领域构建高效、可靠的系统。

    STM32F+ RT-Thread工程源码实验

    RT-Thread作为RTOS,它的核心功能包括任务管理、信号量、互斥锁、消息队列、定时器等。这些组件使得开发者可以在嵌入式系统中实现多任务并发执行,提高系统的响应速度和效率。RT-Thread还支持设备驱动、图形用户界面...

    RT-Thread移植测试代码

    5. **配置RT-Thread内核**:使用RT-Thread Studio或makefile进行内核配置,选择需要的功能模块,如内存管理策略、中断服务、任务调度等。 6. **编译与烧录**:编译源码,生成固件,并通过调试器或编程器将固件烧录...

    基于STM32F103标准库移植RTTHread_NANO

    5. **编写初始化函数**:在用户代码中,创建一个初始化函数来调用rtthread_init(),完成系统的初始化。可能还需要配置GPIO、串口等外设以便调试和通信。 6. **创建任务**:定义并注册应用程序需要的任务函数,使用...

    STM32F103移植rt-thread

    同时,下载rt-thread源码库并设置好项目工程。 2. **硬件初始化**:根据标题描述,我们会在PA9和PA10引脚上配置UART1,这是STM32F103的串口一。你需要配置这些GPIO口为UART功能,并设置波特率、数据位、停止位等...

    LPC176x_Eclipse-RT-thread_Proj.zip

    6. 编写应用程序代码,利用RT-Thread提供的API实现任务调度、定时器、中断处理等功能。 7. 使用Eclipse的构建工具编译项目,生成可烧录的二进制文件。 六、调试与测试 1. 配置调试器,如J-Link或ST-Link,连接到LPC...

    NXP i.MX RT1052 RT-Thread实战:支持多优先级【基于Cortex-M7】

    3. **移植RT-Thread**:将RT-Thread源码导入到项目中,按照官方文档进行移植,包括设置启动函数、初始化堆栈、配置中断向量表等。 4. **驱动程序开发**:编写或移植必要的驱动程序,例如GPIO、UART、SPI、I2C等,...

    RT-Thread学习笔记(1)- 内核移植 - 代码

    2. **初始化函数**:移植过程中,你需要编写一个针对目标硬件的rtthread_init()初始化函数。这个函数会调用各种子函数来初始化硬件资源,如时钟、GPIO、中断、定时器等。 3. **中断处理**:RT-Thread提供了中断管理...

    STM32F103C8T6-物联网工作空间-RT-Thread.rar

    2. RT-Thread源码及配置文件:包含RTOS的核心组件和设备驱动。 3. 应用程序源码:具体实现物联网功能的代码,可能包括传感器数据采集、网络通信、数据处理等。 4. Makefile或Project Options:用于构建和配置项目的...

    ZD-F407-RT-NANO-LED

    RT-Thread 文件夹则直接指向了这个项目的RTOS核心,包含与RT-Thread操作系统相关的源码、配置和库文件。RT-Thread提供了丰富的中间件支持,如网络协议栈、文件系统、GUI等,使得开发者能够方便地构建复杂的嵌入式...

    rt-thread-3.1.0

    rt-thread是一个完全由中国自主研发的实时操作系统,它包含了任务调度、内存管理、信号量、互斥锁、消息队列、邮箱、定时器等多样的操作系统内核组件。rt-thread不仅具备高性能、低功耗的特点,还支持多种硬件平台和...

    rtthread 调通freemodbus STM32F103VCT6

    2. **配置RTThread**:在STM32CubeMX中配置RTThread,设置所需的硬件资源,如串口(UART)用于MODBUS通信,以及定时器(Timer)作为波特率发生器。生成代码后,将RTThread工程导入IDE。 3. **FreeModbus配置**:...

    rt_thread_stm32_enc28j60.rar

    1. **RT-Thread**: RT-Thread是一款开源、轻量级的实时操作系统,适用于各种嵌入式设备,提供线程管理、内存管理、定时器、信号量、互斥锁等功能,为开发者提供了稳定可靠的运行环境。 2. **STM32**: STM32是意法...

    AT32F403A-RTOS 建立过程 [keil5.38a&rtthread3.1.5]

    总的来说,"AT32F403A-RTOS 建立过程 [keil5.38a&rtthread3.1.5]"涉及了嵌入式开发中的多个重要环节,包括RTOS的选择与配置、硬件驱动的编写、应用代码的实现以及调试与优化。这个项目展示了如何在Keil环境下高效地...

    hc32f460petb_template.zip

    在HC32F460上移植RT-Thread Nano,我们需要配置启动代码,初始化内存管理,设置中断服务函数,以及配置硬件时钟和系统定时器。压缩包中的"mcu"目录可能包含了针对HC32F460的特定驱动和配置文件,这些文件对于成功...

Global site tag (gtag.js) - Google Analytics