我们知道,线程的不安全问题,主要是由于多线程并发读取一个变量而引起的,那么有没有一种办法可以让一个变量是线程独有的呢,这样不就可以解决线程安全问题了么。其实JDK已经为我们提供了ThreadLocal这个东西。
◆
ThreadLocal基本使用
◆
当使用ThreadLocal维护变量时,ThreadLocal为每个使用该变量的线程提供独立的变量副本,所以每一个线程都可以独立地改变自己的副本,而不会影响其它线程所对应的副本。
ThreadLocal 的主要方法有这么几个:
1 2 3 4 |
initialValue 初始化 set 赋值 get 取值 remove 清空 |
下面来看一个简单的使用代码示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
public class ThreadLocalDemo { private static ThreadLocal<Integer> threadLocal = new ThreadLocal<Integer>() { @Override public Integer initialValue() { return 0; } }; static class ThreadDemo implements Runnable { @Override public void run() { for (int i = 0; i < 1000; i++) { threadLocal.set(threadLocal.get() + 1); } System.out.println("thread :" + Thread.currentThread().getId() + " is" + threadLocal.get()); } } public static void main(String[] args) { for (int i = 0; i < 10; i++) { new Thread(new ThreadDemo()).start(); } } } |
上方代码使用了10个线程循环对一个threadLocal的值进行一千次的加法,如果我们不知道ThreadLocal的原理的话我们可能会觉得最后打印的值一定是1000、2000、3000。。10000或者是线程不安全的值。
但是如果你执行这段代码你会发现最后打印的都是1000。
◆
ThreadLocal原理剖析
◆
现在我们来看一下ThreadLocal是如何实现为每个线程单独维护一个变量的呢。
先来看一下初始化方法。
1 2 3 |
protected T initialValue() { return null; } |
initialValue 默认是返回空的,所以为了避免空指针问题重写了这个方法设置了默认返回值为0,但是呢,虽然这个方法好像是设置默认值的,但是还没有生效,具体请接着往下看。
1 2 3 4 5 6 7 8 |
public void set(T value) { Thread t = Thread.currentThread(); ThreadLocalMap map = getMap(t); if (map != null) map.set(this, value); else createMap(t, value); } |
我们可以看到set方法首先会获取当前线程,然后通过一个getMap方法获取了ThreadLocalMap,接着来看一下这个map是怎么来的呢。
1 2 3 |
ThreadLocalMap getMap(Thread t) { return t.threadLocals; } |
这个map是在Thread类维护的一个map,下方是Thread类维护的此变量。默认这个map是空的。
1
|
ThreadLocal.ThreadLocalMap threadLocals = null;
|
接着往下看代码,如果获取的时候map不为空,则通过set方法把Thread类的threadLocals变量更新。如果是第一次创建的时候则初始化Thread的threadLocals变量。
下方是createMap的代码:
1 2 3 |
void createMap(Thread t, T firstValue) { t.threadLocals = new ThreadLocalMap(this, firstValue); } |
接下来看个get方法就比较容易理解了。
1 2 3 4 5 6 7 8 9 10 11 12 13 |
public T get() { Thread t = Thread.currentThread(); ThreadLocalMap map = getMap(t); if (map != null) { ThreadLocalMap.Entry e = map.getEntry(this); if (e != null) { T result = (T)e.value; return result; } } return setInitialValue(); } |
注意关注最后的一个return,看到调用的这个方法名我们就可以发现这个ThreadLocal的初始化原来是当第一调用get方法时如果还没有被set的时候才会去获取initialValue 方法的返回值。
1 2 3 4 5 6 7 8 9 10 |
private T setInitialValue() { T value = initialValue(); Thread t = Thread.currentThread(); ThreadLocalMap map = getMap(t); if (map != null) map.set(this, value); else createMap(t, value); return value; } |
◆
使用ThreadLocal最应该注意的事项
◆
首先来看一下线程退出的办法:
1 2 3 4 5 6 7 8 9 10 11 12 |
private void exit() { if (group != null) { group.threadTerminated(this); group = null; } target = null; threadLocals = null; inheritableThreadLocals = null; inheritedAccessControlContext = null; blocker = null; uncaughtExceptionHandler = null; } |
我们看到当线程结束的时候上方第7行会把ThreadLocal的值制为空,这个东西本身是没问题的。但是,如果你是使用的线程池,这个问题可就大了!!!
要知道线程池里的线程执行完一个任务之后紧接着下一个,这中间线程可不会结束,下一个任务获得Thread的值可是上一个任务的遗留数据。
下面是这个问题的示例代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
private static ThreadLocal<Integer> threadLocal = new ThreadLocal<Integer>() { @Override public Integer initialValue() { return 0; } }; static class ThreadDemo implements Runnable { @Override public void run() { for (int i = 0; i < 1000; i++) { threadLocal.set(threadLocal.get() + 1); } System.out.println("thread :" + Thread.currentThread().getId() + " is" + threadLocal.get()); //threadLocal.remove(); } } public static void main(String[] args) { ExecutorService executorService= Executors.newFixedThreadPool(5); for (int i = 0; i < 10; i++) { executorService.submit(new Thread(new ThreadDemo())); } } |
执行这段代码你就会发现同样的操作在线程池里已经得不到一样的结果了。想要解决这种问题也很简单,只需要把ThreadLocal的值在线程执行完清空就可以了。把第14行注释的代码放开再执行以下你就明白了。
◆
InheritableThreadLocal
◆
其实ThreadLocal还有一个比较强大的子类InheritableThreadLocal,它呢可以把父线程生成的变量传递给子线程。
下面来看一下代码示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
public class InheritableThreadLocalDemo { private static InheritableThreadLocal<Integer> inheritableThreadLocal = new InheritableThreadLocal<Integer>(); static class ThreadDemo implements Runnable { @Override public void run() { for (int i = 0; i < 1000; i++) { inheritableThreadLocal.set(inheritableThreadLocal.get() + 1); } System.out.println("thread :" + Thread.currentThread().getId() + " is" + inheritableThreadLocal.get()); } } public static void main(String[] args) { inheritableThreadLocal.set(24); for (int i = 0; i < 10; i++) { new Thread(new ThreadDemo()).start(); } } } |
执行代码会发现程序输出全是1024,这就是因为InheritableThreadLocal吧在主线程设置的值24传递到了那10个子线程中。
◆
InheritableThreadLocal原理剖析
◆
接下来我们来看一下InheritableThreadLocal为什么可以实现这种功能呢。
InheritableThreadLocal是ThreadLocal的子类,
与ThreadLocal相同的set方法
1 2 3 4 5 6 7 8 |
public void set(T value) { Thread t = Thread.currentThread(); ThreadLocalMap map = getMap(t); if (map != null) map.set(this, value); else createMap(t, value); } |
不同点是InheritableThreadLocal重写了createMap方法,将值赋值给了线程的inheritableThreadLocals变量。
1 2 3 |
void createMap(Thread t, T firstValue) { t.inheritableThreadLocals = new ThreadLocalMap(this, firstValue); } |
再跟进去Thread类的源码看inheritableThreadLocals变量你会发现:我去,这不是跟Threadlocal一样么,同样初始值为null,线程退出的时候清空。没错,就是这样的。也就是说它其实也是一个线程私有的变量,ThreadLocal的功能它是都有的。
那么它又是怎么把父线程的变量传递到子线程的呢?
接着看Thread的构造方法
1 2 3 |
public Thread() { init(null, null, "Thread-" + nextThreadNum(), 0); } |
一路追踪init方法你会看见这段代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
private void init(ThreadGroup g, Runnable target, String name, long stackSize, AccessControlContext acc) { if (name == null) { throw new NullPointerException("name cannot be null"); } this.name = name; Thread parent = currentThread(); SecurityManager security = System.getSecurityManager(); if (g == null) { if (security != null) { g = security.getThreadGroup(); } if (g == null) { g = parent.getThreadGroup(); } } g.checkAccess(); if (security != null) { if (isCCLOverridden(getClass())) { security.checkPermission(SUBCLASS_IMPLEMENTATION_PERMISSION); } } g.addUnstarted(); this.group = g; this.daemon = parent.isDaemon(); this.priority = parent.getPriority(); if (security == null || isCCLOverridden(parent.getClass())) this.contextClassLoader = parent.getContextClassLoader(); else this.contextClassLoader = parent.contextClassLoader; this.inheritedAccessControlContext = acc != null ? acc : AccessController.getContext(); this.target = target; setPriority(priority); if (parent.inheritableThreadLocals != null) this.inheritableThreadLocals = ThreadLocal.createInheritedMap(parent.inheritableThreadLocals); this.stackSize = stackSize; tid = nextThreadID(); } |
仔细观察倒数第5行到倒数第二行你就明白了。
本文所有源码https://github.com/shiyujun/syj-study-demo
相关推荐
* InheritableThreadLocal 的实现原理和源码分析 * InheritableThreadLocal 与 ThreadLocal 的区别 * 使用 InheritableThreadLocal 需要注意的线程安全问题 * InheritableThreadLocal 在多线程编程中的应用场景和...
**其他并发工具类与锁原理**:这部分内容涉及ThreadLocal的工作原理、InheritableThreadLocal如何传递线程局部变量、CyclicBarrier和CountDownLatch的区别与用法、Semaphore信号量机制、CopyOnWriteArrayList如何...
### Java进阶知识点详解 #### 第一章:基本语法 ##### 关键字 - **static**:用于定义...以上是对Java进阶知识点的详细解析,覆盖了基本语法、JDK源码分析等多个方面,有助于深入理解Java语言的核心机制及高级特性。
TAC顶刊报告:'多智能体分布式自适应一致性控制(含纯一致性与leader-follower一致性)'及其Matlab复现代码.pdf
SVPWM仿真与基于DSP28335的PIL(处理器在环)仿真模型验证算法可行性与实时性的实践研究.pdf
VSG仿真、并网与离网运行仿真、预同期并网控制及虚拟同步机逆变器仿真.pdf
SSA-RF与RF神经网络多元回归预测(Matlab 程序及运行指南).pdf
Simulink微网多逆变器下垂控制仿真模型:固定与可调的下垂系数、SVPWM与算法控制的并联运行.pdf
电磁场与电磁波28
SSA-CNN-LSTM时间序列预测(Matlab)_ 麻雀算法优化卷积长短期记忆网络.pdf
C++知识点汇总.md.zip
T型逆变器仿真(SPWM)Matlab 2021a:LCL滤波器下纯阻性负载的五电平波形仿真.pdf
STM32G431 FOC线性磁链观测器无感FOC驱动资料(非VESC、非ST电机库生成,支持直接零速闭环启动及电位器转速控制)”.pdf
STM32F103 SAE CAN开放协议源码(含半年咨询费+中文注释及原理说明).pdf
Java项目springboot基于springboot的课程设计,包含源码+数据库+毕业论文
Simulink导弹制导系统仿真模型文件使用指南及视频讲解.pdf
内容概要:本文深入介绍了Caffe深度学习框架,涵盖其历史背景和发展、安装配置、卷积神经网络(CNN)的基础理论及其实现。具体内容包括CNN各个层级的工作原理、Caffe中的网络模型定义和训练方法、LeNet与AlexNet的实际运用、迁移学习及模型的性能优化等。通过详细的实战操作演示,文章帮助开发者掌握在Caffe上搭建CNN的方法和技术。 适合人群:从事计算机视觉领域的研究人员和工程师,尤其是想要深入了解卷积神经网络和掌握Caffe框架的人群。 使用场景及目标:本文适合作为学习材料用于理解卷积神经网络的概念和工作机制,指导初学者和有经验的开发者如何利用Caffe实现图像识别、目标检测等任务;并且帮助读者掌握模型训练和性能优化的相关技能。 其他说明:文中提供了大量代码片段与实例讲解,方便读者理解和实践;此外还对比了几款主流深度学习框架的优势,辅助决策选用合适的开发工具。
1、文件说明: Centos8操作系统vim-editorconfig-1.1.1-1.el8.rpm以及相关依赖,全打包为一个tar.gz压缩包 2、安装指令: #Step1、解压 tar -zxvf vim-editorconfig-1.1.1-1.el8.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm
VMD信号分解算法:VMD功率分解与滚动轴承故障检测.pdf
STM32 IAP固件升级程序源代码(串口环形队列接收模式实现固件升级程序).pdf