- 浏览: 1701132 次
- 性别:
- 来自: 杭州699号
文章分类
最新评论
-
莫莫摸:
为什么不用dubbo
RCP数据传输模型回顾 -
大胡子爸爸:
String, Class 都实现了Serializable接 ...
RPC框架几行代码就够了 -
lss598018587:
谢谢大神分享,比起新手看复杂的dubbo框架还不如看大神的这一 ...
RPC框架几行代码就够了 -
15606915740:
你好,请问一下。<dubbo:consumer filt ...
Dubbo文档 -
joqk12345:
...
一些设计上的基本常识
准备在CommonTemplate(http://commontemplate.org)中实现简单的lambda表达式,转摘一篇介绍性的文章。
先来看一下lambda表达式的基本语法(BNF):
<expr> ::= <identifier>
<expr> ::= lambda <identifier-list>. <expr>
<expr> ::= (<expr> <expr>)
前两条语法用于生成lambda表达式(lambda函数),如:
lambda x y. x + y
haskell里面为了简洁起见用“\”来代替希腊字母lambda,它们形状比较相似。故而上面的定义也可以写成:
\ x y. x + y
这是一个匿名的加法函数,它接受两个参数,返回两值相加的结果。当然,这里我们为了方便起见赋予了lambda函数直观的计算意义,而实际上lambda calculus里面一切都只不过是文本替换,有点像C语言的宏。并且这里的“+”我们假设已经是一个具有原子语义的运算符[6],此外,为了方便我们使用了中缀表达(按照lambda calculus系统的语法实际上应该写成“(+ x y)”才对——参考第三条语法)。
那么,函数定义出来了,怎么使用呢?最后一条规则就是用来调用一个lambda函数的:
((lambda x y. x + y) 2 3)
以上这一行就是把刚才定义的加法函数运用到2和3上(这个调用语法形式跟命令式语言(imperative language)惯用的调用形式有点区别,后者是“f(x, y)”,而这里是“(f x y)”,不过好在顺序没变:) )。为了表达简洁一点,我们可以给(lambda x y. x + y)起一个名字,像这样:
let Add = (lambda x y. x + y)
这样我们便可以使用Add来表示该lambda函数了:
(Add 2 3)
不过还是为了方便起见,后面调用的时候一般用“Add(2, 3)”,即我们熟悉的形式。
有了语法规则之后,我们便可以看一看这个语言系统的两条简单至极的公理了:
Alpha转换公理:例如,“lambda x y. x + y”转换为“lambda a b. a + b”。换句话说,函数的参数起什么名字没有关系,可以随意替换,只要函数体里面对参数的使用的地方也同时注意相应替换掉就是了。
Beta转换公理:例如,“(lambda x y. x + y) 2 3”转换为“2 + 3”。这个就更简单了,也就是说,当把一个lambda函数用到参数身上时,只需用实际的参数来替换掉其函数体中的相应变量即可。
就这些。是不是感觉有点太简单了?但事实就是如此,lambda算子系统从根本上其实就这些东西,然而你却能够从这几个简单的规则中推演出神奇无比的Y combinator来。我们这就开始!
递归的迷思
敏锐的你可能会发现,就以上这两条公理,我们的lambda语言中无法表示递归函数,为什么呢?假设我们要计算经典的阶乘,递归描述肯定像这样:
f(n):
if n == 0 return 1
return n*f(n-1)
当然,上面这个程序是假定n为正整数。这个程序显示了一个特点,f在定义的过程中用到了它自身。那么如何在lambda算子系统中表达这一函数呢?理所当然的想法如下:
lambda n. If_Else n==0 1 n*<self>(n-1)
当然,上面的程序假定了If_Else是一个已经定义好的三元操作符(你可以想象C的“?:”操作符,后面跟的三个参数分别是判断条件、成功后求值的表达式、失败后求值的表达式。那么很显然,这个定义里面有一个地方没法解决,那就是<self>那个地方我们应该填入什么呢?很显然,熟悉C这类命令式语言的人都知道应该填入这个函数本身的名字,然而lambda算子系统里面的lambda表达式(或称函数)是没有名字的。
怎么办?难道就没有办法实现递归了?或者说,丘齐做出的这个lambda算子系统里面根本没法实现递归从而在计算能力上面有重大的缺陷?显然不是。马上你就会看到Y combinator是如何把一个看上去非递归的lambda表达式像变魔术那样变成一个递归版本的。在成功之前我们再失败一次,注意下面的尝试:
let F = lambda n. IF_Else n==0 1 n*F(n-1)
看上去不错,是吗?可惜还是不行。因为let F只是起到一个语法糖的作用,在它所代表的lambda表达式还没有完全定义出来之前你是不可以使用F这个名字的。更何况实际上丘齐当初的lambda算子系统里面也并没有这个语法元素,这只是刚才为了简化代码而引入的语法糖。当然,了解这个let语句还是有意义的,后面还会用到。
一次成功的尝试
在上面几次失败的尝试之后,我们是不是就一筹莫展了呢?别忘了软件工程里面的一条黄金定律:“任何问题都可以通过增加一个间接层来解决”。不妨把它沿用到我们面临的递归问题上:没错,我们的确没办法在一个lambda函数的定义里面直接(按名字)来调用其自身。但是,可不可以间接调用呢?
我们回顾一下刚才不成功的定义:
lambda n. If_Else n==0 1 n*<self>(n-1)
现在<self>处不是缺少“这个函数自身”嘛,既然不能直接填入“这个函数自身”,我们可以增加一个参数,也就是说,把<self>参数化:
lambda self n. If_Else n==0 1 n*self(n-1)
上面这个lambda算子总是合法定义了吧。现在,我们调用这个函数的时候,只要加传一个参数self,这个参数不是别人,正是这个函数自身。还是为了简单起见,我们用let语句来给上面这个函数起个别名:
let P = lambda self n. If_Else n==0 1 n*self(n-1)
我们这样调用,比如说我们要计算3的阶乘:
P(P, 3)
也就是说,把P自己作为P的第一个参数(注意,调用的时候P已经定义完毕了,所以我们当然可以使用它的名字了)。这样一来,P里面的self处不就等于是P本身了吗?自身调用自身,递归!
可惜这只是个美好的设想,还差一点点。我们分析一下P(P, 3)这个调用。利用前面讲的Beta转换规则,这个函数调用展开其实就是(你可以完全把P当成一个宏来进行展开!):
IF_Else n==0 1 n*P(n-1)
看出问题了吗?这里的P(n-1)虽然调用到了P,然而只给出了一个参数;而从P的定义来看,它是需要两个参数的(分别为self和n)!也就是说,为了让P(n-1)变成良好的调用,我们得加一个参数才行,所以我们得稍微修改一下P的定义:
let P = lambda self n. If_Else n==0 1 n*self(self, n-1)
请注意,我们在P的函数体内调用self的时候增加了一个参数。现在当我们调用P(P, 3)的时候,展开就变成了:
IF_Else 3==0 1 3*P(P, 3-1)
而P(P, 3-1)是对P合法的递归调用。这次我们真的成功了!
不动点原理
然而,看看我们的P的定义,是不是很丑陋?“n*self(self, n-1)”?什么玩意?为什么要多出一个多余的self?DRY!怎么办呢?我们想起我们一开始定义的那个失败的P,虽然行不通,但最初的努力往往是大脑最先想到的最直观的做法,我们来回顾一下:
let P = lambda self n. If_Else n==0 1 n*self(n-1)
这个P的函数体就非常清晰,没有冗余成分,虽然参数列表里面多出一个self,但我们其实根本不用管它,看函数体就行了,self这个名字已经可以说明一切了对不对?但很可惜这个函数不能用。我们再来回想一下为什么不能用呢?因为当你调用P(P, n)的时候,里面的self(n-1)会展开为P(n-1)而P是需要两个参数的。唉,要是这里的self是一个“真正”的,只需要一个参数的递归阶乘函数,那该多好啊。为什么不呢?干脆我们假设出一个“真正”的递归阶乘函数:
power(n):
if(n==0) return 1;
return n*power(n-1);
但是,前面不是说过了,这个理想的版本无法在lambda算子系统中定义出来吗(由于lambda函数都是没名字的,无法自己内部调用自己)?不急,我们并不需要它被定义出来,我们只需要在头脑中“假设”它以“某种”方式被定义出来了,现在我们把这个真正完美的power传给P,这样:
P(power, 3)
注意它跟P(P, 3)的不同,P(P, 3)我们传递的是一个有缺陷的P为参数。而P(power, 3)我们则是传递的一个真正的递归函数power。我们试着展开P(power, 3):
IF_Else 3==0 1 3*power(3-1)
发生了什么??power(3-1)将会计算出2的阶乘(别忘了,power是我们设想的完美递归函数),所以这个式子将会忠实地计算出3的阶乘!
回想一下我们是怎么完成这项任务的:我们设想了一个以某种方式构造出来的完美的能够内部自己调用自己的递归阶乘函数power,我们发现把这个power传给P的话,P(power, n)的展开式就是真正的递归计算n阶乘的代码了。
你可能要说:废话!都有了power了我们还要费那事把它传给P来个P(power, n)干嘛?直接power(n)不就得了?! 别急,之所以设想出这个power只是为了引入不动点的概念,而不动点的概念将会带领我们发现Y combinator。
什么是不动点?一点都不神秘。让我们考虑刚才的power与P之间的关系。一个是真正可递归的函数,一个呢,则是以一个额外的self参数来试图实现递归的伪递归函数,我们已经看到了把power交给P为参数发生了什么,对吧?不,似乎还没有,我们只是看到了,“把power加上一个n一起交给P为参数”能够实现真正的递归。现在我们想考虑power跟P之间的关系,直接把power交给P如何?
P(power)
这是什么?这叫函数的部分求值(partial evaluation)。换句话说,第一个参数是给出来了,但第二个参数还悬在那里,等待给出。那么,光给一个参数得到的是什么呢?是“还剩一个参数待给的一个新的函数”。其实也很简单,只要按照Beta转换规则做就是了,把P的函数体里面的self出现处皆替换为power就可以了。我们得到:
IF_Else n==0 1 n*power(n-1)
当然,这个式子里面还有一个变量没有绑定,那就是n,所以这个式子还不能求值,你需要给它一个n才能具体求值,对吧。这么说,这可不就是一个以n为参数的函数么?实际上就是的。在lambda算子系统里面,如果给一个lambda函数的参数不足,则得到的就是一个新的lambda函数,这个新的lambda函数所接受的参数也就是你尚未给出的那些参数。换句话来说,调用一个lambda函数可以分若干步来进行,每次只给出一部分参数,而只有等所有参数都给齐了,函数的求值结果才能出来,否则你得到的就是一个“中间函数”。
那么,这跟不动点定理有什么关系?关系大了,刚才不是说了,P(power)返回的是一个新的“中间函数”嘛?这个“中间函数”的函数体我们刚才已经看到了,就是简单地展开P(power)而已,回顾一遍:
IF_Else n==0 1 n*power(n-1)
我们已经知道,这是个函数,参数n待定。因此我们不妨给它加上一个“lambda n”的帽子,这样好看一点:
lambda n. IF_Else n==0 1 n*power(n-1)
这是什么呢?这可不就是power本身的定义?(当然,如果我们能够定义power的话)。不信我们看看power如果能够定义出来像什么样子:
let power = lambda n. IF_Else n==0 1 n*power(n-1)
一模一样!也就是说,P(power)展开后跟power是一样的。即:
P(power) = power
以上就是所谓的不动点。即对于函数P来说power是这样一个“点”:当把P用到power身上的时候,得到的结果仍然还是power,也就是说,power这个“点”在P的作用下是“不动”的。
可惜的是,这一切居然都是建立在一个不存在的power的基础上的,又有什么用呢?可别过早提“不存在”这个词,你觉得一样东西不存在或许只是你没有找到使它存在的正确方法。我们已经看到power是跟P有着密切联系的。密切到什么程度呢?对于伪递归的P,存在一个power,满足P(power)=power。注意,这里所说的“伪递归”的P,是指这样的形式:
let P = lambda self n. If_Else n==0 1 n*self(n-1) // 注意,不是self(self,n-1)
一般化的描述就是,对任一伪递归F(回想一下伪递归的F如何得到——是我们为了解决lambda函数不能引用自身的问题,于是给理想的f加一个self参数从而得到的),必存在一个理想f(F就是从这个理想f演变而来的),满足F(f) = f。
那么,现在的问题就归结为如何针对F找到它的f了。根据F和f之间的密切联系(F就比f多出一个self参数而已),我们可以从F得出f吗?假设我们可以(又是假设),也就是说假设我们找到了一根魔棒,把它朝任意一个伪递归的F一挥,眼前一花,它就变成了真正的f了。这根魔棒如果存在的话,它具有什么性质?我们假设这个神奇的函数叫做Y,把Y用到任何伪递归的函数F上就能够得到真正的f,也就是说:
Y(F) = f
结合上面的F(f) = f,我们得到:
Y(F) = f = F(f) = F(Y(F))
也就是说,Y具有性质:
Y(F) = F(Y(F))
性质倒是找出来了,怎么构造出这个Y却又成了难题。一个办法就是使用抽象法,这是从工程学的思想的角度,也就是通过不断迭代、重构,最终找到问题的解。然而对于这里的Y combinator,接近问题解的过程却显得复杂而费力,甚至过程中的有些点上的思维跳跃有点如羚羊挂角无迹可寻。然而,在这整个Y combinator介绍完了之后我们将会介绍著名的哥德尔不完备性定理,然后我们就会发现,通过哥德尔不完备性定理证明中的一个核心构造式,只需一步自然的推导就能得出我们的Y combinator。而且,最美妙的是,还可以再往下归约,把一切都归约到康托尔当初提出的对角线方法,到那时我们就会发现原来同样如羚羊挂角般的哥德尔的证明其实是对角线方法的一个自然推论。数学竟是如此奇妙,我们由简单得无法再简单的lambda calculus系统的两条公理居然能够导出如此复杂如此令人目眩神迷的Y Combinator,而这些复杂性其实也只是荡漾在定理海洋中的涟漪,拨开复杂性的迷雾我们重又发现它们居然寓于极度的简洁之中。这就是数学之美。
让我们先来看一看Y combinator的费力而复杂的工程学构造法,我会尽量让这个过程显得自然而流畅[7]:
我们再次回顾一下那个伪递归的求阶乘函数:
let P = lambda self n. If_Else n==0 1 n*self(n-1)
我们的目标是找出P的不动点power,根据不动点的性质,只要把power传给P,即P(power),便能够得到真正的递归函数了。
现在,关键的地方到了,由于:
power = P(power) // 不动点原理
这就意味着,power作为一个函数(lambda calculus里面一切都是函数),它是自己调用了自己的。那么,我们如何实现这样一个能够自己调用自己的power呢?回顾我们当初成功的一次尝试,要实现递归,我们是通过增加一个间接层来进行的:
let power_gen = lambda self. P(self(self))
还记得self(self)这个形式吗?我们在成功实现出求阶乘递归函数的时候不就是这么做的?那么对于现在这个power_gen,怎么递归调用?
power_gen(power_gen)
不明白的话可以回顾一下前面我们调用P(P, n)的地方。这里power_gen(power_gen)展开后得到的是什么呢?我们根据刚才power_gen的定义展开看一看,原来是:
P(power_gen(power_gen))
看到了吗?也就是说:
power_gen(power_gen) => P(power_gen(power_gen))
现在,我们把power_gen(power_gen)当成整体看,不妨令为power,就看得更清楚了:
power => P(power)
这不正是我们要的答案么?
OK,我们总结一下:对于给定的P,只要构造出一个相应的power_gen如下:
let power_gen = lambda self. P(self(self))
我们就会发现,power_gen(power_gen)这个调用展开后正是P(power_gen(power_gen))。也就是说,我们的power_gen(power_gen)就是我们苦苦寻找的不动点了!
铸造Y Combinator
现在我们终于可以铸造我们的Y Combinator了,Y Combinator只要生成一个形如power_gen的lambda函数然后把它应用到自身,就大功告成:
let Y = lambda F.
let f_gen = lambda self. F(self(self))
return f_gen(f_gen)
稍微解释一下,Y是一个lambda函数,它接受一个伪递归F,在内部生成一个f_gen(还记得我们刚才看到的power_gen吧),然后把f_gen应用到它自身(记得power_gen(power_gen)吧),得到的这个f_gen(f_gen)也就是F的不动点了(因为f_gen(f_gen) = F(f_gen(f_gen))),而根据不动点的性质,F的不动点也就是那个对应于F的真正的递归函数!
如果你还觉得不相信,我们稍微展开一下看看,还是拿阶乘函数说事,首先我们定义阶乘函数的伪递归版本:
let Pwr = lambda self n. If_Else n==0 1 n*self(n-1)
让我们把这个Pwr交给Y,看会发生什么(根据刚才Y的定义展开吧):
Y(Pwr) =>
let f_gen = lambda self. Pwr(self(self))
return f_gen(f_gen)
Y(Pwr)的求值结果就是里面返回的那个f_gen(f_gen),我们再根据f_gen的定义展开f_gen(f_gen),得到:
Pwr(f_gen(f_gen))
也就是说:
Y(Pwr) => f_gen(f_gen) => Pwr(f_gen(f_gen))
我们来看看得到的这个Pwr(f_gen(f_gen))到底是不是真有递归的魔力。我们展开它(注意,因为Pwr需要两个参数,而我们这里只给出了一个,所以Pwr(f_gen(f_gen))得到的是一个单参(即n)的函数):
Pwr(f_gen(f_gen)) => If_Else n==0 1 n*f_gen(f_gen) (n-1)
而里面的那个f_gen(f_gen),根据f_gen的定义,又会展开为Pwr(f_gen(f_gen)),所以:
Pwr(f_gen(f_gen)) => If_Else n==0 1 n* Pwr(f_gen(f_gen)) (n-1)
看到加粗的部分了吗?因为Pwr(f_gen(f_gen))是一个接受n为参数的函数,所以不妨把它令成f(f的参数是n),这样上面的式子就是:
f => If_Else n==0 1 n*f(n-1)
完美的阶乘函数!
从哥德尔公式到Y Combinator
哥德尔的不完备性定理证明了数学是一个未完结的学科,永远有需要我们以人的头脑从系统之外去用我们独有的直觉发现的东西。罗杰·彭罗斯在《The Emperor's New Mind》中用它来证明人工智能的不可实现。当然,这个结论是很受质疑的。但哥德尔的不完备性定理的确还有很多很多的有趣推论,数学的和哲学上的。哥德尔的不完备性定理最深刻的地方就是它揭示了自指(或称自引用,递归调用自身等等)结构的普遍存在性,我们再来看一看哥德尔命题的绝妙构造:
G(n): UnPr( N(n) )
我们注意到,这里的UnPr其实是一个形式化的谓词,它不一定要说“X在T内可证明”,我们可以把它泛化为一个一般化的谓词,P:
G(n): P( N(n) )
也就是说,对于任意一个单参的谓词P,都存在上面这个哥德尔公式。然后我们算出这个哥德尔公式的自然数编码g,然后把它扔给G,就得到:
G(g): P( G(g) )
是不是很熟悉这个结构?我们的Y Combinator的构造不就是这样一个形式?我们把G和P都看成一元函数,G(g)可不正是P这个函数的不动点么!于是,我们从哥德尔的证明里面直接看到了Y Combinator!
先来看一下lambda表达式的基本语法(BNF):
<expr> ::= <identifier>
<expr> ::= lambda <identifier-list>. <expr>
<expr> ::= (<expr> <expr>)
前两条语法用于生成lambda表达式(lambda函数),如:
lambda x y. x + y
haskell里面为了简洁起见用“\”来代替希腊字母lambda,它们形状比较相似。故而上面的定义也可以写成:
\ x y. x + y
这是一个匿名的加法函数,它接受两个参数,返回两值相加的结果。当然,这里我们为了方便起见赋予了lambda函数直观的计算意义,而实际上lambda calculus里面一切都只不过是文本替换,有点像C语言的宏。并且这里的“+”我们假设已经是一个具有原子语义的运算符[6],此外,为了方便我们使用了中缀表达(按照lambda calculus系统的语法实际上应该写成“(+ x y)”才对——参考第三条语法)。
那么,函数定义出来了,怎么使用呢?最后一条规则就是用来调用一个lambda函数的:
((lambda x y. x + y) 2 3)
以上这一行就是把刚才定义的加法函数运用到2和3上(这个调用语法形式跟命令式语言(imperative language)惯用的调用形式有点区别,后者是“f(x, y)”,而这里是“(f x y)”,不过好在顺序没变:) )。为了表达简洁一点,我们可以给(lambda x y. x + y)起一个名字,像这样:
let Add = (lambda x y. x + y)
这样我们便可以使用Add来表示该lambda函数了:
(Add 2 3)
不过还是为了方便起见,后面调用的时候一般用“Add(2, 3)”,即我们熟悉的形式。
有了语法规则之后,我们便可以看一看这个语言系统的两条简单至极的公理了:
Alpha转换公理:例如,“lambda x y. x + y”转换为“lambda a b. a + b”。换句话说,函数的参数起什么名字没有关系,可以随意替换,只要函数体里面对参数的使用的地方也同时注意相应替换掉就是了。
Beta转换公理:例如,“(lambda x y. x + y) 2 3”转换为“2 + 3”。这个就更简单了,也就是说,当把一个lambda函数用到参数身上时,只需用实际的参数来替换掉其函数体中的相应变量即可。
就这些。是不是感觉有点太简单了?但事实就是如此,lambda算子系统从根本上其实就这些东西,然而你却能够从这几个简单的规则中推演出神奇无比的Y combinator来。我们这就开始!
递归的迷思
敏锐的你可能会发现,就以上这两条公理,我们的lambda语言中无法表示递归函数,为什么呢?假设我们要计算经典的阶乘,递归描述肯定像这样:
f(n):
if n == 0 return 1
return n*f(n-1)
当然,上面这个程序是假定n为正整数。这个程序显示了一个特点,f在定义的过程中用到了它自身。那么如何在lambda算子系统中表达这一函数呢?理所当然的想法如下:
lambda n. If_Else n==0 1 n*<self>(n-1)
当然,上面的程序假定了If_Else是一个已经定义好的三元操作符(你可以想象C的“?:”操作符,后面跟的三个参数分别是判断条件、成功后求值的表达式、失败后求值的表达式。那么很显然,这个定义里面有一个地方没法解决,那就是<self>那个地方我们应该填入什么呢?很显然,熟悉C这类命令式语言的人都知道应该填入这个函数本身的名字,然而lambda算子系统里面的lambda表达式(或称函数)是没有名字的。
怎么办?难道就没有办法实现递归了?或者说,丘齐做出的这个lambda算子系统里面根本没法实现递归从而在计算能力上面有重大的缺陷?显然不是。马上你就会看到Y combinator是如何把一个看上去非递归的lambda表达式像变魔术那样变成一个递归版本的。在成功之前我们再失败一次,注意下面的尝试:
let F = lambda n. IF_Else n==0 1 n*F(n-1)
看上去不错,是吗?可惜还是不行。因为let F只是起到一个语法糖的作用,在它所代表的lambda表达式还没有完全定义出来之前你是不可以使用F这个名字的。更何况实际上丘齐当初的lambda算子系统里面也并没有这个语法元素,这只是刚才为了简化代码而引入的语法糖。当然,了解这个let语句还是有意义的,后面还会用到。
一次成功的尝试
在上面几次失败的尝试之后,我们是不是就一筹莫展了呢?别忘了软件工程里面的一条黄金定律:“任何问题都可以通过增加一个间接层来解决”。不妨把它沿用到我们面临的递归问题上:没错,我们的确没办法在一个lambda函数的定义里面直接(按名字)来调用其自身。但是,可不可以间接调用呢?
我们回顾一下刚才不成功的定义:
lambda n. If_Else n==0 1 n*<self>(n-1)
现在<self>处不是缺少“这个函数自身”嘛,既然不能直接填入“这个函数自身”,我们可以增加一个参数,也就是说,把<self>参数化:
lambda self n. If_Else n==0 1 n*self(n-1)
上面这个lambda算子总是合法定义了吧。现在,我们调用这个函数的时候,只要加传一个参数self,这个参数不是别人,正是这个函数自身。还是为了简单起见,我们用let语句来给上面这个函数起个别名:
let P = lambda self n. If_Else n==0 1 n*self(n-1)
我们这样调用,比如说我们要计算3的阶乘:
P(P, 3)
也就是说,把P自己作为P的第一个参数(注意,调用的时候P已经定义完毕了,所以我们当然可以使用它的名字了)。这样一来,P里面的self处不就等于是P本身了吗?自身调用自身,递归!
可惜这只是个美好的设想,还差一点点。我们分析一下P(P, 3)这个调用。利用前面讲的Beta转换规则,这个函数调用展开其实就是(你可以完全把P当成一个宏来进行展开!):
IF_Else n==0 1 n*P(n-1)
看出问题了吗?这里的P(n-1)虽然调用到了P,然而只给出了一个参数;而从P的定义来看,它是需要两个参数的(分别为self和n)!也就是说,为了让P(n-1)变成良好的调用,我们得加一个参数才行,所以我们得稍微修改一下P的定义:
let P = lambda self n. If_Else n==0 1 n*self(self, n-1)
请注意,我们在P的函数体内调用self的时候增加了一个参数。现在当我们调用P(P, 3)的时候,展开就变成了:
IF_Else 3==0 1 3*P(P, 3-1)
而P(P, 3-1)是对P合法的递归调用。这次我们真的成功了!
不动点原理
然而,看看我们的P的定义,是不是很丑陋?“n*self(self, n-1)”?什么玩意?为什么要多出一个多余的self?DRY!怎么办呢?我们想起我们一开始定义的那个失败的P,虽然行不通,但最初的努力往往是大脑最先想到的最直观的做法,我们来回顾一下:
let P = lambda self n. If_Else n==0 1 n*self(n-1)
这个P的函数体就非常清晰,没有冗余成分,虽然参数列表里面多出一个self,但我们其实根本不用管它,看函数体就行了,self这个名字已经可以说明一切了对不对?但很可惜这个函数不能用。我们再来回想一下为什么不能用呢?因为当你调用P(P, n)的时候,里面的self(n-1)会展开为P(n-1)而P是需要两个参数的。唉,要是这里的self是一个“真正”的,只需要一个参数的递归阶乘函数,那该多好啊。为什么不呢?干脆我们假设出一个“真正”的递归阶乘函数:
power(n):
if(n==0) return 1;
return n*power(n-1);
但是,前面不是说过了,这个理想的版本无法在lambda算子系统中定义出来吗(由于lambda函数都是没名字的,无法自己内部调用自己)?不急,我们并不需要它被定义出来,我们只需要在头脑中“假设”它以“某种”方式被定义出来了,现在我们把这个真正完美的power传给P,这样:
P(power, 3)
注意它跟P(P, 3)的不同,P(P, 3)我们传递的是一个有缺陷的P为参数。而P(power, 3)我们则是传递的一个真正的递归函数power。我们试着展开P(power, 3):
IF_Else 3==0 1 3*power(3-1)
发生了什么??power(3-1)将会计算出2的阶乘(别忘了,power是我们设想的完美递归函数),所以这个式子将会忠实地计算出3的阶乘!
回想一下我们是怎么完成这项任务的:我们设想了一个以某种方式构造出来的完美的能够内部自己调用自己的递归阶乘函数power,我们发现把这个power传给P的话,P(power, n)的展开式就是真正的递归计算n阶乘的代码了。
你可能要说:废话!都有了power了我们还要费那事把它传给P来个P(power, n)干嘛?直接power(n)不就得了?! 别急,之所以设想出这个power只是为了引入不动点的概念,而不动点的概念将会带领我们发现Y combinator。
什么是不动点?一点都不神秘。让我们考虑刚才的power与P之间的关系。一个是真正可递归的函数,一个呢,则是以一个额外的self参数来试图实现递归的伪递归函数,我们已经看到了把power交给P为参数发生了什么,对吧?不,似乎还没有,我们只是看到了,“把power加上一个n一起交给P为参数”能够实现真正的递归。现在我们想考虑power跟P之间的关系,直接把power交给P如何?
P(power)
这是什么?这叫函数的部分求值(partial evaluation)。换句话说,第一个参数是给出来了,但第二个参数还悬在那里,等待给出。那么,光给一个参数得到的是什么呢?是“还剩一个参数待给的一个新的函数”。其实也很简单,只要按照Beta转换规则做就是了,把P的函数体里面的self出现处皆替换为power就可以了。我们得到:
IF_Else n==0 1 n*power(n-1)
当然,这个式子里面还有一个变量没有绑定,那就是n,所以这个式子还不能求值,你需要给它一个n才能具体求值,对吧。这么说,这可不就是一个以n为参数的函数么?实际上就是的。在lambda算子系统里面,如果给一个lambda函数的参数不足,则得到的就是一个新的lambda函数,这个新的lambda函数所接受的参数也就是你尚未给出的那些参数。换句话来说,调用一个lambda函数可以分若干步来进行,每次只给出一部分参数,而只有等所有参数都给齐了,函数的求值结果才能出来,否则你得到的就是一个“中间函数”。
那么,这跟不动点定理有什么关系?关系大了,刚才不是说了,P(power)返回的是一个新的“中间函数”嘛?这个“中间函数”的函数体我们刚才已经看到了,就是简单地展开P(power)而已,回顾一遍:
IF_Else n==0 1 n*power(n-1)
我们已经知道,这是个函数,参数n待定。因此我们不妨给它加上一个“lambda n”的帽子,这样好看一点:
lambda n. IF_Else n==0 1 n*power(n-1)
这是什么呢?这可不就是power本身的定义?(当然,如果我们能够定义power的话)。不信我们看看power如果能够定义出来像什么样子:
let power = lambda n. IF_Else n==0 1 n*power(n-1)
一模一样!也就是说,P(power)展开后跟power是一样的。即:
P(power) = power
以上就是所谓的不动点。即对于函数P来说power是这样一个“点”:当把P用到power身上的时候,得到的结果仍然还是power,也就是说,power这个“点”在P的作用下是“不动”的。
可惜的是,这一切居然都是建立在一个不存在的power的基础上的,又有什么用呢?可别过早提“不存在”这个词,你觉得一样东西不存在或许只是你没有找到使它存在的正确方法。我们已经看到power是跟P有着密切联系的。密切到什么程度呢?对于伪递归的P,存在一个power,满足P(power)=power。注意,这里所说的“伪递归”的P,是指这样的形式:
let P = lambda self n. If_Else n==0 1 n*self(n-1) // 注意,不是self(self,n-1)
一般化的描述就是,对任一伪递归F(回想一下伪递归的F如何得到——是我们为了解决lambda函数不能引用自身的问题,于是给理想的f加一个self参数从而得到的),必存在一个理想f(F就是从这个理想f演变而来的),满足F(f) = f。
那么,现在的问题就归结为如何针对F找到它的f了。根据F和f之间的密切联系(F就比f多出一个self参数而已),我们可以从F得出f吗?假设我们可以(又是假设),也就是说假设我们找到了一根魔棒,把它朝任意一个伪递归的F一挥,眼前一花,它就变成了真正的f了。这根魔棒如果存在的话,它具有什么性质?我们假设这个神奇的函数叫做Y,把Y用到任何伪递归的函数F上就能够得到真正的f,也就是说:
Y(F) = f
结合上面的F(f) = f,我们得到:
Y(F) = f = F(f) = F(Y(F))
也就是说,Y具有性质:
Y(F) = F(Y(F))
性质倒是找出来了,怎么构造出这个Y却又成了难题。一个办法就是使用抽象法,这是从工程学的思想的角度,也就是通过不断迭代、重构,最终找到问题的解。然而对于这里的Y combinator,接近问题解的过程却显得复杂而费力,甚至过程中的有些点上的思维跳跃有点如羚羊挂角无迹可寻。然而,在这整个Y combinator介绍完了之后我们将会介绍著名的哥德尔不完备性定理,然后我们就会发现,通过哥德尔不完备性定理证明中的一个核心构造式,只需一步自然的推导就能得出我们的Y combinator。而且,最美妙的是,还可以再往下归约,把一切都归约到康托尔当初提出的对角线方法,到那时我们就会发现原来同样如羚羊挂角般的哥德尔的证明其实是对角线方法的一个自然推论。数学竟是如此奇妙,我们由简单得无法再简单的lambda calculus系统的两条公理居然能够导出如此复杂如此令人目眩神迷的Y Combinator,而这些复杂性其实也只是荡漾在定理海洋中的涟漪,拨开复杂性的迷雾我们重又发现它们居然寓于极度的简洁之中。这就是数学之美。
让我们先来看一看Y combinator的费力而复杂的工程学构造法,我会尽量让这个过程显得自然而流畅[7]:
我们再次回顾一下那个伪递归的求阶乘函数:
let P = lambda self n. If_Else n==0 1 n*self(n-1)
我们的目标是找出P的不动点power,根据不动点的性质,只要把power传给P,即P(power),便能够得到真正的递归函数了。
现在,关键的地方到了,由于:
power = P(power) // 不动点原理
这就意味着,power作为一个函数(lambda calculus里面一切都是函数),它是自己调用了自己的。那么,我们如何实现这样一个能够自己调用自己的power呢?回顾我们当初成功的一次尝试,要实现递归,我们是通过增加一个间接层来进行的:
let power_gen = lambda self. P(self(self))
还记得self(self)这个形式吗?我们在成功实现出求阶乘递归函数的时候不就是这么做的?那么对于现在这个power_gen,怎么递归调用?
power_gen(power_gen)
不明白的话可以回顾一下前面我们调用P(P, n)的地方。这里power_gen(power_gen)展开后得到的是什么呢?我们根据刚才power_gen的定义展开看一看,原来是:
P(power_gen(power_gen))
看到了吗?也就是说:
power_gen(power_gen) => P(power_gen(power_gen))
现在,我们把power_gen(power_gen)当成整体看,不妨令为power,就看得更清楚了:
power => P(power)
这不正是我们要的答案么?
OK,我们总结一下:对于给定的P,只要构造出一个相应的power_gen如下:
let power_gen = lambda self. P(self(self))
我们就会发现,power_gen(power_gen)这个调用展开后正是P(power_gen(power_gen))。也就是说,我们的power_gen(power_gen)就是我们苦苦寻找的不动点了!
铸造Y Combinator
现在我们终于可以铸造我们的Y Combinator了,Y Combinator只要生成一个形如power_gen的lambda函数然后把它应用到自身,就大功告成:
let Y = lambda F.
let f_gen = lambda self. F(self(self))
return f_gen(f_gen)
稍微解释一下,Y是一个lambda函数,它接受一个伪递归F,在内部生成一个f_gen(还记得我们刚才看到的power_gen吧),然后把f_gen应用到它自身(记得power_gen(power_gen)吧),得到的这个f_gen(f_gen)也就是F的不动点了(因为f_gen(f_gen) = F(f_gen(f_gen))),而根据不动点的性质,F的不动点也就是那个对应于F的真正的递归函数!
如果你还觉得不相信,我们稍微展开一下看看,还是拿阶乘函数说事,首先我们定义阶乘函数的伪递归版本:
let Pwr = lambda self n. If_Else n==0 1 n*self(n-1)
让我们把这个Pwr交给Y,看会发生什么(根据刚才Y的定义展开吧):
Y(Pwr) =>
let f_gen = lambda self. Pwr(self(self))
return f_gen(f_gen)
Y(Pwr)的求值结果就是里面返回的那个f_gen(f_gen),我们再根据f_gen的定义展开f_gen(f_gen),得到:
Pwr(f_gen(f_gen))
也就是说:
Y(Pwr) => f_gen(f_gen) => Pwr(f_gen(f_gen))
我们来看看得到的这个Pwr(f_gen(f_gen))到底是不是真有递归的魔力。我们展开它(注意,因为Pwr需要两个参数,而我们这里只给出了一个,所以Pwr(f_gen(f_gen))得到的是一个单参(即n)的函数):
Pwr(f_gen(f_gen)) => If_Else n==0 1 n*f_gen(f_gen) (n-1)
而里面的那个f_gen(f_gen),根据f_gen的定义,又会展开为Pwr(f_gen(f_gen)),所以:
Pwr(f_gen(f_gen)) => If_Else n==0 1 n* Pwr(f_gen(f_gen)) (n-1)
看到加粗的部分了吗?因为Pwr(f_gen(f_gen))是一个接受n为参数的函数,所以不妨把它令成f(f的参数是n),这样上面的式子就是:
f => If_Else n==0 1 n*f(n-1)
完美的阶乘函数!
从哥德尔公式到Y Combinator
哥德尔的不完备性定理证明了数学是一个未完结的学科,永远有需要我们以人的头脑从系统之外去用我们独有的直觉发现的东西。罗杰·彭罗斯在《The Emperor's New Mind》中用它来证明人工智能的不可实现。当然,这个结论是很受质疑的。但哥德尔的不完备性定理的确还有很多很多的有趣推论,数学的和哲学上的。哥德尔的不完备性定理最深刻的地方就是它揭示了自指(或称自引用,递归调用自身等等)结构的普遍存在性,我们再来看一看哥德尔命题的绝妙构造:
G(n): UnPr( N(n) )
我们注意到,这里的UnPr其实是一个形式化的谓词,它不一定要说“X在T内可证明”,我们可以把它泛化为一个一般化的谓词,P:
G(n): P( N(n) )
也就是说,对于任意一个单参的谓词P,都存在上面这个哥德尔公式。然后我们算出这个哥德尔公式的自然数编码g,然后把它扔给G,就得到:
G(g): P( G(g) )
是不是很熟悉这个结构?我们的Y Combinator的构造不就是这样一个形式?我们把G和P都看成一元函数,G(g)可不正是P这个函数的不动点么!于是,我们从哥德尔的证明里面直接看到了Y Combinator!
发表评论
-
以HTTL为例讲讲模块分包&领域模型&扩展框架
2011-10-09 20:08 16755注:该博客内容已加入 ... -
CommonTemplate增加HTML标签版语法外套
2008-09-09 10:33 2974CommonTemplate(http://www.commo ... -
CommonTemplate访问者设计思考
2008-09-03 10:45 1782经过多个版本的调整, CommonTemplate(http: ... -
CommonTemplate发布0.8.6版本
2008-08-26 20:49 1803CommonTemplate发布0.8.6版本 ... -
CommonTemplate发布0.8.5版本
2008-08-04 13:23 1897CommonTemplate发布0.8.5版本(2008-08 ... -
CommonTemplate加入代码生成器
2008-07-21 13:15 2247模板引擎经常被用于做代码生成, 为此, CommonTempl ... -
加入对YAML数据格式的支持
2008-07-01 12:41 4005CommonTemplate(http://www.commo ... -
嵌套注释语法思考
2008-06-29 14:40 4023主流的C/C++/Java/C#等语言,都将注释语法设计成不可 ... -
转:开源协议
2008-06-10 17:23 2233来源:网络 (1)Contrib ... -
CommonTemplate完成查看器Viewer.exe(及安装程序)
2008-06-04 15:12 1875完成查看器初始版本. 实现功能: 双击*.ctl文件, 自动读 ... -
CommonTemplate完成外部构建树或表达式接口
2008-05-31 11:01 1951CommonTemplate: http://www.comm ... -
CommonTemplate异常国际化完成
2008-05-26 11:48 1929周未把一个累活给干了, 就是异常信息的国际化. 总共有220多 ... -
CommonTemplate加入对无穷数的支持.
2008-05-23 11:07 2742用"*"号表示无穷数, 常在下标号中使用, ... -
CommonTemplate导出模板所需变量结构
2008-05-12 18:28 2262在velocity的邮件列表中收到下面的邮件: Simon G ... -
CommonTemplate完成$snatch指令
2008-05-06 09:20 1905CommonTemplate(http://www.commo ... -
关于CTE当前API无法支持从非引擎方式构建模板树
2008-04-28 17:20 1797因隐藏了模板树的实现, 现在CommonTemplate(ht ... -
CommonTemplate完成DEBUG单步调试
2008-04-21 09:56 2534CommonTemplate(http://www.commo ... -
CommonTemplate准备加入$breakpoint指令
2008-04-19 10:30 2211准备在CommonTemplate( http://www.c ... -
很高兴桂林兄加入CommonTemplate的开发
2008-04-05 20:49 2934桂林的blog: http://jasongreen.itey ... -
展开式序列实现
2008-03-31 22:47 2102现在CommonTemplate(http://www.com ...
相关推荐
"C# Lambda 表达式的使用" Lambda 表达式是 C# 编程语言中的一个重要概念,也是函数式编程的基础。Lambda 表达式可以被用作创建委托对象或表达式树类型。所有的 Lambda 表达式都使用操作符“=>“,表示“goes to ...
Lambda表达式是Java编程语言中的一个关键特性,自Java 8开始引入,它极大地简化了函数式编程,尤其是在处理集合数据时。Lambda表达式的主要目的是为了创建匿名函数,即没有名字的函数,它可以被当作一个值传递给方法...
Java8的Lambda表达式是Java语言的一次重大更新,它引入了函数式编程的概念,极大地简化了处理匿名函数的方式,特别是在处理集合和并发操作时。Lambda表达式使得代码更加简洁、易读,同时也提升了程序的执行效率。在...
在.NET框架中,C#是一种强大的编程语言,它支持Lambda表达式,这使得代码更加简洁、易读。Lambda表达式通常用于LINQ(Language Integrated Query)查询,它允许程序员使用类似SQL的语法在内存中的数据集上进行操作。...
Java 8 的引入,尤其是Lambda表达式,对Java语言产生了深远的影响,它为Java开发者带来了更简洁、更灵活的编程方式。Lambda表达式是函数式编程的核心元素,它允许我们将函数作为方法参数传递,或者将代码块当作数据...
3. **方法引用**:当Lambda体完全等同于某个已存在的方法时,可以使用方法引用来替代Lambda表达式,如 `Arrays.sort(list, Comparator.comparingInt(Integer::intValue))`。 4. **构造器引用**:同样,Lambda 表达式...
C++11引入了许多重要的新特性,其中最显著的一项是Lambda表达式。这一特性极大地简化了代码编写过程,使得开发者能够更方便地创建匿名函数对象。Lambda表达式在很多场景下都可以替代回调函数,并且在诸如STL容器的...
C++ 11引入了lambda表达式,这是一个强大的特性,极大地增强了C++的函数式编程能力。Lambda表达式允许在程序中直接定义匿名函数,并且可以直接在需要的地方使用,无需预先声明。这对于处理回调函数、简化算法实现...
lambda 表达式和递归算法 lambda 表达式是一种匿名函数,可以用来定义小的、单次使用的函数。它通常用于数据处理、事件处理和其他需要临时函数的情况。lambda 表达式的基本语法是:`lambda arguments : expression`...
Java 8 是一个重要的Java平台版本,因为它引入了许多新特性,其中最显著的就是Lambda表达式。Lambda表达式是函数式编程的关键元素,它允许我们以更简洁、更易读的方式编写代码,特别是在处理集合和并发任务时。在这...
Java 8 引入了Lambda表达式,这是对传统编程方式的一大革新,它极大地简化了函数式编程,尤其是在处理集合和并发操作时。Lambda表达式是Java 8中的一种语法糖,它允许开发者以更简洁的方式定义无状态、无副作用的...
Java 8 引入的 Lambda 表达式是 Java 编程语言的重大变革之一,它允许以更简洁的方式表示单方法接口的实现,极大地增强了 Java 语言的表达能力,尤其是结合了函数式接口、Stream API 和其他新特性后。接下来,我们将...
《精通Lambda表达式:Java多核编程》这本书深入探讨了Java编程中的一种重要特性——Lambda表达式,以及如何在多核环境下充分利用这一特性提高程序性能。Lambda表达式是Java 8引入的关键特性之一,它极大地简化了函数...
Lambda表达式是Java 8引入的一种新的编程特性,它极大地简化了函数式编程,并使得代码更加简洁、易读。在Java中,Lambda表达式可以被理解为匿名函数,即没有名字的函数,它可以被当作方法参数传递,或者作为类的成员...
Java Lambda表达式是Java 8引入的一个重要特性,它极大地简化了函数式编程风格的实现。Lambda表达式允许我们将函数作为一个值传递,就像传递其他数据类型一样。这在处理集合、事件驱动编程以及多线程等场景下尤其...
在编程领域,`lambda`表达式是一种简洁的创建匿名函数的方式,它允许我们在不定义完整函数的情况下使用函数。在Python中,`lambda`表达式特别常见,因为它们可以帮助我们快速编写简洁的一行函数。本文将深入探讨如何...
C# Lambda表达式入门学习资料 本文旨在为新手提供易于理解的C# Lambda表达式入门学习资料,帮助读者快速掌握Lambda表达式的基础知识和应用场景。 Lambda表达式是什么? -------------------- Lambda表达式是一种...
Stream和Lambda表达式实践 在Java中,Stream API是Java 8中引入的一种新的数据处理方式,它可以对集合进行各种操作,如过滤、映射、聚合等。Lambda表达式是Java 8中引入的一种新的函数式编程方式,它可以将函数作为...
Java8发布到现在至少3年了,但是对Lambda表达式不熟悉、看不懂、不会用的现象非常常见。 即使是升级到JDK1.8了,但是很多开发者依然是停留在1.8之前的开发方式,使用的也是非常老旧和过时的API,遇到函数式接口也是...
Lambda表达式是Java 8引入的一种新特性,它极大地简化了函数式编程,使得代码更加简洁、易读。Lambda表达式本质上是匿名函数,可以理解为没有名字的函数,但功能与普通方法相同,能够被赋值给变量,也可以作为参数...