`
JavaCrazyer
  • 浏览: 3023782 次
  • 性别: Icon_minigender_1
  • 来自: 河南
社区版块
存档分类

Hibernate温习(10)--应用程序中的事务管理

阅读更多

事务的定义

事务就是指作为单个逻辑工作单元执行的一组数据操作,这些操作要么必须全部成功,要么必须全部失败,以保证数据的一致性和完整性。

事务具有ACID属性

 

 原子性(Atomic):事务由一个或多个行为绑在一起组成,好像是一个单独的工作单元。原子性确保在事务中的所有操作要么都发生,要么都不发生。

 一致性(Consistent):一旦一个事务结束了(不管成功与否),系统所处的状态和它的业务规则是一致的。即数据应当不会被破坏。

 隔离性(Isolated):事务应该允许多个用户操作同一个数据,一个用户的操作不会和其他用户的操作相混淆。

 持久性(Durable):一旦事务完成,事务的结果应该持久化。

 


 

 事务的ACID特性是由关系数据库管理系统(RDBMS)来实现的。

1)数据库管理系统采用日志来保证事务的原子性、一致性和持久性。日志记录了事务对数据库所做的更新,如果某个事务在执行过程中发生错误,就可以根据日志,撤销事务对数据库已做的更新,使数据库退回到执行事务前的初始状态。

2)数据库管理系统采用锁机制来实现事务的隔离性。当多个事务同时更新数据库相同的数据时,只允许持有锁的事务能更新该数据,其他事务必须等待,直到前一个事务释放了锁,其他事务才有机会更新该数据。

 


数据库事务声明

数据库系统的客户程序只要向数据库系统声明了一个事务,数据库系统就会自动保证事务的ACID特性。在JDBC API中,java.sql.Connection类代表一个数据库连接。它提供了以下方法控制事务:

1.   setAutoCommit(Boolean autoCommit):设置是否自动提交事务。

2.    commit():提交事务。

3.     rollback():撤销事务 

JDBC API声明事务的示例代码如下:

Connection = null;
PreparedStatement pstmt = null;
try{
con = DriverManager.getConnection(dbUrl, username, password);
//设置手工提交事务模式
con.setAutoCommit(false);
pstmt = ……;
pstmt.executeUpdate();
//提交事务
con.commit();
}catch(Exception e){
//事务回滚
con.rollback();
…..
} finally{
    …….
}
 

Hibernate 是JDBC 的轻量级封装,本身并不具备事务管理能力。

在事务管理层, Hibernate将其委托给底层的JDBC或者JTA,只是将底层的JDBCTransaction或者JTATransaction进行封装一下,在外边套上Transaction和Session的外壳,以实现事务管理和调度功能。

1)Hibernate中使用JDBC事务
如果在Hibernate中使用JDBC事务,可以在hibernate.cfg.xml中指定Hibernate事务为JDBCTransaction。如果不进行配置,Hibernate会默认使用JDBC事务。代码如下


<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE hibernate-configuration PUBLIC
	"-//Hibernate/Hibernate Configuration DTD 3.0//EN"
	"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
<session-factory>
	  <property name="hibernate.transaction.factory_class">    
	  org.hibernate.transaction.JDBCTransactionFactory
      </property>    
</session-factory>
</hibernate-configuration>

 基于JDBC的事务管理将事务管理委托给JDBC 进行处理无疑是最简单的实现方式,Hibernate 对于JDBC事务的封装也极为简单。 


我们来看下面这段代码:

Java代码
Transaction tx=null;
try{
session = sessionFactory.openSession();    
Transaction tx = session.beginTransaction();    //开启事务
//执行持久化操作
……    
tx.commit();   //操作正常,提交事务
}catch(RuntimeException e){
 if(tx!=null){
 tx.rollback();//操作过程中有一场,回滚事务
 throw e;//处理异常
}
}finally{
 session.close()
} 
  从JDBC层面而言,上面的代码实际上对应着: 
Java代码
Connection dbconn = getConnection();    
dbconn.setAutoCommit(false);    
……    
dbconn.commit();    
  就是这么简单,Hibernate并没有做更多的事情(实际上也没法做更多的事情),只是将这样的JDBC代码进行了封装而已。 
这里要注意的是,在sessionFactory.openSession()中,hibernate会初始化数据库连接,与此同时,将其AutoCommit 设为关闭状态(false)。而其后,在Session.beginTransaction 方法中,Hibernate 会再次确认Connection 的AutoCommit 属性被设为关闭状态( 为了防止用户代码对session 的Connection.AutoCommit属性进行修改)。
这也就是说,我们一开始从SessionFactory获得的session,其自动提交属性就已经被关闭(AutoCommit=false),下面的代码将不会对数据库产生任何效果:
Java代码
session = sessionFactory.openSession();    
session.save(user);    
session.close();   
session = sessionFactory.openSession();
session.save(user);
session.close(); 
  这实际上相当于 JDBC Connection的AutoCommit属性被设为false,执行了若干JDBC操作之后,没有调用commit操作即将Connection关闭。如果要使代码真正作用到数据库,我们必须显式的调用Transaction指令: 
Java代码
session = sessionFactory.openSession();    
Transaction tx = session.beginTransaction();    
session.save(user);    
tx.commit();    
session.close();    
2)  Hibernate中使用JTA事务
具体配置为
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE hibernate-configuration PUBLIC
	"-//Hibernate/Hibernate Configuration DTD 3.0//EN"
	"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
<session-factory>
	  <property name="hibernate.transaction.factory_class">    
	  org.hibernate.transaction.JTATransactionFactory
      </property>    
</session-factory>
</hibernate-configuration>
 JTA 提供了跨Session 的事务管理能力。这一点是与JDBC Transaction 最大的差异。 
JDBC事务由Connnection管理,也就是说,事务管理实际上是在JDBC Connection中实现。事务周期限于Connection的生命周期之类。同样,对于基于JDBC Transaction的Hibernate 事务管理机制而言,事务管理在Session 所依托的JDBC Connection中实现,事务周期限于Session的生命周期。 
JTA 事务管理则由 JTA 容器实现,JTA 容器对当前加入事务的众多Connection 进 行调度,实现其事务性要求。JTA的事务周期可横跨多个JDBC Connection生命周期。 同样对于基于JTA事务的Hibernate而言,JTA事务横跨可横跨多个Session。 
JTA 事务是由JTA Container 维护,而参与事务的Connection无需对事务管理进行干涉。这也就是说,如果采用JTA Transaction,我们不应该再调用HibernateTransaction功能。 
上面基于JDBC Transaction的正确代码,这里就会产生问题:

public class ClassA{    
public void saveUser(User user){    
session = sessionFactory.openSession();    
Transaction tx = session.beginTransaction();    
session.save(user);    
tx.commit();    
session.close();    
}    
}    
public class ClassB{    
public void saveOrder(Order order){    
session = sessionFactory.openSession();    
Transaction tx = session.beginTransaction();    
session.save(order);    
tx.commit();    
session.close();    
}    
}    
public class ClassC{    
public void save(){    
……    
UserTransaction tx = new InitialContext().lookup(“……”);    
ClassA.save(user);    
ClassB.save(order);    
tx.commit();    
……    
}    
}   
public class ClassA{
public void saveUser(User user){
session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();
session.save(user);
tx.commit();
session.close();
}
}
public class ClassB{
public void saveOrder(Order order){
session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();
session.save(order);
tx.commit();
session.close();
}
}
public class ClassC{
public void save(){
try{
UserTransaction tx = (UserTransaction)new InitialContext().lookup(“java:comp/UserTransaction”);
tx.begin();//开启JTA事务
ClassA.save(user);
ClassB.save(order);
tx.commit();//操作正常,提交JTA事务
}catch(RuntimeException e){
tx.rollback();//操作异常,回滚JTA事务
throw e;//异常处理
}finally{
}
}
}
    这里有两个类ClassA和ClassB,分别提供了两个方法:saveUsersaveOrder,用于保存用户信息和订单信息。在ClassC中,我们接连调用了ClassA.saveUser方法和ClassB.saveOrder 方法,同时引入了JTA 中的UserTransaction 以实现ClassC.save方法中的事务性。问题出现了,ClassA 和ClassB 中分别都调用了Hibernate 的Transaction 功能。在Hibernate 的JTA 封装中,Session.beginTransaction 同样也执行了InitialContext.lookup方法获取UserTransaction实例,Transaction.commit方法同样也调用了UserTransaction.commit方法。实际上,这就形成了两个嵌套式的JTA Transaction:ClassC 申明了一个事务,而在ClassC 事务周期内,ClassA 和ClassB也企图申明自己的事务,这将导致运行期错误。因此,如果决定采用JTA Transaction,应避免再重复调用Hibernate 的 
Transaction功能,上面的代码修改如下:
 public class ClassA{
public void save(TUser user){    
session = sessionFactory.openSession();    
session.save(user);    
session.close();    
}    
……    
}    
public class ClassB{    
public void save (Order order){    
session = sessionFactory.openSession();    
session.save(order);    
session.close();    
}    
……    
}    
public class ClassC{    
public void save(){    
……    
UserTransaction tx = new InitialContext().lookup(“……”);    
classA.save(user);    
classB.save(order);    
tx.commit();    
……    
}    
}   
public class ClassA{
public void save(TUser user){
session = sessionFactory.openSession();
session.save(user);
session.close();
}
……
}
public class ClassB{
public void save (Order order){
session = sessionFactory.openSession();
session.save(order);
session.close();
}
……
}
public class ClassC{
public void save(){
……
UserTransaction tx = new InitialContext().lookup(“……”);
classA.save(user);
classB.save(order);
tx.commit();
……
}
}
 上面代码中的ClassC.save方法,也可以改成这样: 
Java代码
public class ClassC{    
public void save(){    
……    
session = sessionFactory.openSession();    
Transaction tx = session.beginTransaction();    
classA.save(user);    
classB.save(order);    
tx.commit();    
……    
}    
}   
  实际上,这是利用Hibernate来完成启动和提交UserTransaction的功能,但这样的做法比原本直接通过InitialContext获取UserTransaction 的做法消耗了更多的资源,得不偿失。 
在EJB 中使用JTA Transaction 无疑最为简便,我们只需要将save 方法配置为JTA事务支持即可,无需显式申明任何事务,下面是一个Session Bean的save方法,它的事务属性被申明为“Required”,EJB容器将自动维护此方法执行过程中的事务:
Java代码
/**   
* @ejb.interface-method   
* view-type="remote"   
*   
* @ejb.transaction type = "Required"   
**/   
public void save(){    
//EJB环境中,通过部署配置即可实现事务申明,而无需显式调用事务    
classA.save(user);    
classB.save(log);    
}//方法结束时,如果没有异常发生,则事务由EJB容器自动提交。
  
分享到:
评论

相关推荐

    计算机网络专业毕业实习报告3000字.docx

    基于struts构架的web应用程序基本上符合JSP Model2的设计标准,可以说是MVC设计模式的一种变化类型。Struts是一个web framwork,而不仅仅是一些标记库的组合。但 Struts 也包含了丰富的标记库和独立于该框架工作的...

    springmybatis

    3. 在session 中完成对数据的增删改查和事务提交等. 4. 在用完之后关闭session 。 5. 在java 对象和 数据库之间有做mapping 的配置文件,也通常是xml 文件。 mybatis实战教程(mybatis in action)之一:开发环境搭建 ...

    C2000系列DSP芯片串口读写方案与FlashPro2000编程器应用详解

    内容概要:本文详细介绍了基于TMS320F系列芯片的C2000串口读写方案及其编程器——FlashPro2000的功能特点和支持的接口模式。文中不仅涵盖了硬件连接的具体步骤,还提供了代码实例来展示Flash擦除操作,并对比了JTAG和SCI-BOOT两种模式的优缺点。此外,针对不同型号的C2000系列芯片,给出了详细的适配指导以及避免烧录过程中可能出现的问题的方法。 适合人群:从事DSP开发的技术人员,尤其是对TI公司C2000系列芯片有一定了解并希望深入了解其编程和烧录细节的人群。 使用场景及目标:适用于实验室环境下的程序调试阶段,以及生产线上的批量烧录任务。主要目的是帮助开发者选择合适的编程工具和技术手段,提高工作效率,减少因误操作导致设备损坏的风险。 其他说明:文中提供的代码片段和命令行指令可以直接用于实际项目中,同时附带了一些实用技巧,如防止芯片变砖的小贴士和自动化重试脚本,有助于解决常见的烧录难题。

    汉字字库存储芯片扩展实验通常是为了学习和理解如何在嵌入式系统或计算机硬件中增加或管理存储资源,特别是针对需要处理中文字符的应用 这类实验对于想要深入了解计算机体系结构、嵌入式开发以及汉字编码的学生和工

    汉字字库存储芯片扩展实验 # 汉字字库存储芯片扩展实验 ## 实验目的 1. 了解汉字字库的存储原理和结构 2. 掌握存储芯片扩展技术 3. 学习如何通过硬件扩展实现大容量汉字字库存储 ## 实验原理 ### 汉字字库存储基础 - 汉字通常采用点阵方式存储(如16×16、24×24、32×32点阵) - 每个汉字需要占用32字节(16×16)到128字节(32×32)不等的存储空间 - 国标GB2312-80包含6763个汉字,需要较大存储容量 ### 存储芯片扩展方法 1. **位扩展**:增加数据总线宽度 2. **字扩展**:增加存储单元数量 3. **混合扩展**:同时进行位扩展和字扩展 ## 实验设备 - 单片机开发板(如STC89C52) - 存储芯片(如27C256、29C040等) - 逻辑门电路芯片(如74HC138、74HC373等) - 示波器、万用表等测试设备 - 连接线若干 ## 实验步骤 ### 1. 单芯片汉字存储实验 1. 连接27C256 EPROM芯片到单片机系统 2. 将16×16点阵汉字字库写入芯片 3. 编写程序读取并显示汉字 ### 2. 存储芯片字扩展实验 1. 使用地址译码器(如74HC138)扩展多片27C256 2. 将完整GB2312字库分布到各芯片中 3. 编写程序实现跨芯片汉字读取 ### 3. 存储芯片位扩展实验 1. 连接两片27C256实现16位数据总线扩展 2. 优化字库存储结构,提高读取速度 3. 测试并比较扩展前后的性能差异 ## 实验代码示例(单片机部分) ```c #include <reg52.h> #include <intrins.h> // 定义存储芯片控制引脚 sbit CE = P2^7; // 片选 sbit OE = P2^6; // 输出使能 sbit

    测控装备干扰源快速侦测系统设计研究.pdf

    测控装备干扰源快速侦测系统设计研究.pdf

    嵌入式八股文面试题库资料知识宝典-【开发】嵌入式开源项目&库&资料.zip

    嵌入式八股文面试题库资料知识宝典-【开发】嵌入式开源项目&库&资料.zip

    嵌入式八股文面试题库资料知识宝典-百度2022年嵌入式面试题.zip

    嵌入式八股文面试题库资料知识宝典-百度2022年嵌入式面试题.zip

    少儿编程scratch项目源代码文件案例素材-空间站.zip

    少儿编程scratch项目源代码文件案例素材-空间站.zip

    基于关联规则的商业银行个性化产品推荐.pdf

    基于关联规则的商业银行个性化产品推荐.pdf

    嵌入式八股文面试题库资料知识宝典-Linux基础使用.zip

    嵌入式八股文面试题库资料知识宝典-Linux基础使用.zip

    MATLAB仿真轴棱锥生成贝塞尔高斯光束及环形光束光强图像分析

    内容概要:本文详细介绍了利用MATLAB进行轴棱锥生成贝塞尔高斯光束及环形光束光强图像的仿真研究。首先阐述了实验的背景与目标,强调了MATLAB在光学和计算科学领域的广泛应用。接着,具体描述了实验的方法与步骤,包括材料准备、仿真过程中的参数设定和光束生成代码编写。最后,对实验结果进行了深入分析,展示了贝塞尔高斯光束和环形光束的光强分布特点,验证了其光学性能的预期表现。文章还对未来的研究方向和技术改进提出了展望。 适合人群:从事光学、物理学及相关领域研究的专业人士,特别是对光束生成和光学性能分析感兴趣的科研工作者。 使用场景及目标:适用于需要进行光束生成和性能分析的实验室环境,旨在帮助研究人员更好地理解和优化光束特性和传播行为。 其他说明:本文不仅提供了详细的实验方法和步骤,还附有丰富的实验结果和数据分析,为后续研究提供了宝贵的参考资料。

    三电平NPC型APF模型预测控制中滞环控制模块的应用与开关频率优化研究

    内容概要:本文探讨了三电平NPC型有源电力滤波器(APF)的模型预测控制(MPC)中存在的开关频率过高问题及其解决方案。传统MPC方法会导致极高的开关频率,增加了系统的能耗和热量。通过引入滞环控制模块,可以在不大幅牺牲性能的情况下有效降低开关频率。具体来说,滞环控制通过在价值函数计算后增加一个判断条件,对状态切换进行惩罚,从而减少不必要的开关动作。实验结果显示,开关频率从4392Hz降至3242Hz,降幅达26.2%,虽然电流总谐波畸变率(THD)略有上升,但仍符合国家标准。此外,文中还提出了动态调整滞环宽度的方法,以进一步优化不同负载条件下的表现。 适合人群:从事电力电子、电力系统控制领域的研究人员和技术人员,特别是关注APF和MPC技术的人群。 使用场景及目标:适用于需要优化APF系统开关频率的研究和工程项目,旨在提高系统效率并降低成本。目标是在不影响系统性能的前提下,显著降低开关频率,减少能量损失和热管理难度。 其他说明:文章不仅提供了理论分析,还包括具体的实现代码片段,有助于读者理解和实践。同时,强调了在实际应用中需要注意的问题,如中点电位漂移等。

    计算流体力学中三维POD DMD程序的原网格处理方法及应用

    内容概要:本文介绍了三维POD DMD程序在处理原网格数据方面的独特优势和技术细节。首先阐述了该程序能读取结构化和非结构化网格数据及其拓扑关系,在生成模态数据过程中保持原始网格形态而不需要进行网格插值操作。接着展示了简化版本的Python代码片段,揭示了读取网格数据和生成模态数据的核心逻辑。最后提到提供的辅助学习资料如代码、视频教程、Word教程和实例数据,帮助用户深入理解并掌握该程序的应用。 适合人群:从事计算流体力学领域的研究人员和技术爱好者,尤其是那些希望提高数据处理效率的人群。 使用场景及目标:适用于需要处理复杂网格数据的研究项目,旨在简化数据处理流程,提升工作效率,同时保持数据的原始特性。 其他说明:文中不仅提供了理论性的讲解,还有具体的代码示例和丰富的学习资源,使读者可以边学边练,快速上手。

    融合双向路由注意力的多尺度X光违禁品检测.pdf

    融合双向路由注意力的多尺度X光违禁品检测.pdf

    嵌入式八股文面试题库资料知识宝典-Linux_Shell基础使用.zip

    嵌入式八股文面试题库资料知识宝典-Linux_Shell基础使用.zip

    嵌入式八股文面试题库资料知识宝典-联发科2021武汉嵌入式软件开发.zip

    嵌入式八股文面试题库资料知识宝典-联发科2021武汉嵌入式软件开发.zip

    基于有限体积法Godunov格式的管道泄漏检测模型研究.pdf

    基于有限体积法Godunov格式的管道泄漏检测模型研究.pdf

    嵌入式八股文面试题库资料知识宝典-ARM常见面试题目.zip

    嵌入式八股文面试题库资料知识宝典-ARM常见面试题目.zip

    基于LWR问题的无证书全同态加密方案.pdf

    基于LWR问题的无证书全同态加密方案.pdf

    嵌入式八股文面试题库资料知识宝典-符坤面试经验.zip

    嵌入式八股文面试题库资料知识宝典-符坤面试经验.zip

Global site tag (gtag.js) - Google Analytics