- 浏览: 25519 次
- 性别:
- 来自: 上海
最新评论
Java 集合比较
ArrayList和LinkedList
对于处理一列数据项,Java提供了两个类ArrayList和LinkedList,ArrayList的内部实现是基于内部数组Object[],所以 从概念上讲,它更象数组,但LinkedList的内部实现是基于一组连接的记录,所以,它更象一个链表结构,所以,它们在性能上有很大的差别。
(1) 从上面的分析可知,在ArrayList的前面或中间插入数据时,你必须将其后的所有数据相应的后移,这样必然要花费较多时间,所以,当你的操作是在一列 数据的后面添加数据而不是在前面或中间,并且需要随机地访问其中的元素时,使用ArrayList会提供比较好的性能。
(2)而访问链表中的某个元素时,就必须从链表的一端开始沿着连接方向一个一个元素地去查找,直到找到所需的元素为止,所以,当你的操作是在一列数据的前面或中间添加或删除数据,并且按照顺序访问其中的元素时,就应该使用LinkedList了。
(3)如果在编程中,1,2两种情形交替出现,这时,你可以考虑使用List这样的通用接口,而不用关心具体的实现,在具体的情形下,它的性能由具体的实现来保证。
设置集合类的初始大小
在Java 集合框架中的大部分类的大小是可以随着元素个数的增加而相应的增加的,我们似乎不用关心它的初始大小,但如果我们考虑类的性能问题时,就一定要考虑尽可能 地设置好集合对象的初始大小,这将大大提高代码的性能,比如,Hashtable缺省的初始大小为101,载入因子为0.75,即如果其中的元素个数超过 75个,它就必须增加大小并重新组织元素,所以,如果你知道在创建一个新的Hashtable对象时就知道元素的确切数目如为110,那么,就应将其初始 大小设为110/0.75=148,这样,就可以避免重新组织内存并增加大小。
线性表,链表,哈希表是常用的数据结构,在进行Java开发时,JDK已经为我们提供了一系列相应的类来实现基本的数据结构。这些类均在java.util包中。本文试图通过简单的描述,向读者阐述各个类的作用以及如何正确使用这些类。
Collection
├List
│├LinkedList
│├ArrayList
│└Vector
│ └Stack
└Set
├HashSet
├TreeSet
Map
├Hashtable
├TreeMap
├HashMap
└WeakHashMap
Collection接口
Collection是最基本的集合接口,一个Collection代表一组Object,即Collection的元素(Elements)。一些 Collection允许相同的元素而另一些不行。一些能排序而另一些不行。Java SDK不提供直接继承自Collection的类,Java SDK提供的类都是继承自Collection的“子接口”如List和Set。
所有实现Collection接口的类都必须提供两个标准的 构造函数:无参数的构造函数用于创建一个空的Collection,有一个Collection参数的构造函数用于创建一个新的Collection,这个新的Collection与传入的Collection有相同的元素。后一个构造函数允许用户复制一个Collection。
如何遍历Collection中的每一个元素?不论Collection的实际类型如何,它都支持一个iterator()的方法,该方法返回一个迭代子,使用该迭代子即可逐一访问Collection中每一个元素。典型的用法如下:
Iterator it = collection.iterator(); // 获得一个迭代子
while(it.hasNext()) {
Object obj = it.next(); // 得到下一个元素
}
由Collection接口派生的两个接口是List和Set。
List接口
List是有序的Collection,使用此接口能够精确的控制每个元素插入的位置。用户能够使用索引(元素在List中的位置,类似于数组下标)来访问List中的元素,这类似于Java的数组。
和Set不同是,List允许有相同的元素。除了具有Collection接口必备的iterator()方法外,List还提供一个listIterator()方法,返回一个 ListIterator接口,和标准的Iterator接口相比,ListIterator多了一些add()之类的方法,允许添加,删除,设定元素, 还能向前或向后遍历。
实现List接口的常用类有LinkedList,ArrayList,Vector和Stack。
LinkedList类
LinkedList实现了List接口,允许null元素。此外LinkedList提供额外的get,remove,insert方法在 LinkedList的首部或尾部。这些操作使LinkedList可被用作堆栈(stack),队列(queue)或双向队列(deque)。
注意LinkedList没有同步方法,即非线程安全。如果多个线程同时访问一个List,则必须自己实现访问同步。一种解决方法是在创建List时构造一个同步的List:
List list = Collections.synchronizedList(new LinkedList(...));
ArrayList类
ArrayList实现了可变大小的数组。它允许所有元素,包括null。ArrayList没有同步,即非线程安全。size,isEmpty,get,set方法运行时间为常数。但是add方法开销为分摊的常数,添加n个元素需要O(n)的时间。其他的方法运行时间为线性。
每个ArrayList实例都有一个容量(Capacity),即用于存储元素的数组的大小。这个容量可随着不断添加新元素而自动增加,但是增长算法并没有定义。当需要插入大量元素时,在插入前可以调用ensureCapacity方法来增加ArrayList的容量以提高插入效率。
和LinkedList一样,ArrayList也是非同步的(unsynchronized)。
Vector类
Vector非常类似ArrayList,但是Vector是同步的。由Vector创建的Iterator,虽然和ArrayList创建的 Iterator是同一接口,但是,因为Vector是同步的,当一个Iterator被创建而且正在被使用,另一个线程改变了Vector的状态(例如,添加或删除了一些元素),这时调用Iterator的方法时将抛出ConcurrentModificationException,因此必须捕获该异常。
Vector的方法都是同步的(Synchronized),是线程安全的(thread-safe),而ArrayList的方法不是,由于线程的同步必然要影响性能,因此,ArrayList的性能比Vector好。当Vector或ArrayList中的元素超过它的初始大小时,Vector会将它的容量翻倍,而ArrayList只增加50%的大小,这样,ArrayList就有利于节约内存空间。
Stack 类
Stack继承自Vector,实现一个后进先出的堆栈。Stack提供5个额外的方法使得Vector得以被当作堆栈使用。基本的push和pop方法,还有peek方法得到栈顶的元素,empty方法测试堆栈是否为空,search方法检测一个元素在堆栈中的位置。Stack刚创建后是空栈。
Set接口
Set是一种不包含重复的元素的Collection,即任意的两个元素e1和e2都有e1.equals(e2)=false,Set最多有一个null元素。很明显,Set的构造函数有一个约束条件,传入的Collection参数不能包含重复的元素。请注意:必须小心操作可变对象(Mutable Object)。如果一个Set中的可变元素改变了自身状态导致Object.equals(Object)=true将导致一些问题。
Set接口也是Collection的一种扩展,而与List不同的时,在Set中的对象元素不能重复,也就是说你不能把同样的东西两次放入同一个Set容器中。它的常用具体实现有HashSet和TreeSet类。HashSet能快速定位一个元素,但是你放到HashSet中的对象需要实现hashCode()方法,它使用了前面说过的哈希码的算法。而TreeSet则将放入其中的元素按序存放,这就要求你放入其中的对象是可排序的,这就用到了集合框架提供的另外两个实用类Comparable和Comparator。一个类是可排序的,它就应该实现Comparable接口。有时多个类具有相同的排序算法,那就不需要在每分别重复定义相同的排序算法,只要实现Comparator接口即可。集合框架中还有两个很实用的公用类:Collections和Arrays。Collections提供了对一个Collection容器进行诸如排序、复制、查找和填充等一些非常有用的方法,Arrays则是对一个数组进行类似的操作。
Map接口
请注意,Map没有继承Collection接口,Map提供key到value的映射。一个Map中不能包含相同的key,每个key只能映射一个value。Map接口提供3种集合的视图,Map的内容可以被当作一组key集合,一组value集合,或者一组key-value映射。
Hashtable类
Hashtable继承Map接口,实现一个key-value映射的哈希表。任何非空(non-null)的对象都可作为key或者value。添加数据使用put(key, value),取出数据使用get(key),这两个基本操作的时间开销为常数。Hashtable 通过initial capacity和load factor两个参数调整性能。通常缺省的load factor 0.75较好地实现了时间和空间的均衡。增大load factor可以节省空间但相应的查找时间将增大,这会影响像get和put这样的操作。使用Hashtable的简单示例如下,将1,2,3放到Hashtable中,他们的key分别是”one”,”two”,”three”:
Hashtable numbers = new Hashtable();
numbers.put(“one”, new Integer(1));
numbers.put(“two”, new Integer(2));
numbers.put(“three”, new Integer(3));
要取出一个数,比如2,用相应的key:
Integer n = (Integer)numbers.get(“two”);
System.out.println(“two = ” + n);
由于作为key的对象将通过计算其散列函数来确定与之对应的value的位置,因此任何作为key的对象都必须实现hashCode和equals方 法。hashCode和equals方法继承自根类Object,如果你用自定义的类当作key的话,要相当小心,按照散列函数的定义,如果两个对象相同,即obj1.equals(obj2)=true,则它们的hashCode必须相同,但如果两个对象不同,则它们的hashCode不一定不同,如果两个不同对象的hashCode相同,这种现象称为冲突,冲突会导致操作哈希表的时间开销增大,所以尽量定义好的hashCode()方法,能加快哈希表的操作。
如果相同的对象有不同的hashCode,对哈希表的操作会出现意想不到的结果(期待的get方法返回null),要避免这种问题,只需要牢记一条:要同时复写equals方法和hashCode方法,而不要只写其中一个。Hashtable是同步的。
TreeMap类
TreeMap则是对键按序存放,因此它便有一些扩展的方法,比如firstKey(),lastKey()等,你还可以从TreeMap中指定一个范围以取得其子Map。键和值的关联很简单,用pub(Object key,Object value)方法即可将一个键与一个值对象相关联。用get(Object key)可得到与此key对象所对应的值对象。
HashMap类
HashMap和Hashtable类似,不同之处在于HashMap是非同步的,并且允许null,即null value和null key。,但是将HashMap视为Collection时(values()方法可返回Collection),其迭代子操作时间开销和HashMap的容量成比例。因此,如果迭代操作的性能相当重要的话,不要将HashMap的初始化容量设得过高,或者load factor过低。
WeakHashMap类
WeakHashMap是一种改进的HashMap,它对key实行“弱引用”,如果一个key不再被外部所引用,那么该key可以被GC回收。
总结
如果涉及到堆栈,队列等操作,应该考虑用List,对于需要快速插入,删除元素,应该使用LinkedList,如果需要快速随机访问元素,应该使用ArrayList。
如果程序在单线程环境中,或者访问仅仅在一个线程中进行,考虑非同步的类,其效率较高,如果多个线程可能同时操作一个类,应该使用同步的类。
要特别注意对哈希表的操作,作为key的对象要正确复写equals和hashCode方法。
尽量返回接口而非实际的类型,如返回List而非ArrayList,这样如果以后需要将ArrayList换成LinkedList时,客户端代码不用改变。这就是针对抽象编程。
(参考:Sun JDK1.4.1 API DOC)
练习使用工具类Collections:
import java.util.*;
public class TestCollections{
public static void main(String[] args)
{
CollcetionsTest ct=new CollcetionsTest();
ct.printMap();
}
}
class CollcetionsTest{
HashMap hash=new HashMap();
public void printMap()
{
hash.put("1","value1");
hash.put("2","value2");
hash.put("3","value3");
hash.put("4","value4");
List valueList=new ArrayList(hash.values());
for(int i=0;i<valueList.size();i++)
{
String temp=(String)valueList.get(i);
System.out.println("value"+i+"="+temp); //the sequence is not sure
}
/*wrong useage coz list for binarySearch must be sorted(ascending or descending) first*/
int targetPosition=Collections.binarySearch(valueList,"value3");
System.out.println("$$$$$$position of value3="+targetPosition);
targetPosition=Collections.binarySearch(valueList,"value1");
System.out.println("$$$$$$position of value1="+targetPosition);
/* wrong usage*/
ArrayList testList=(ArrayList)valueList;
for(int i=0;i<testList.size();i++)
{
String temp=(String)testList.get(i);
System.out.println("********testList value"+i+"="+temp); //the sequence is not sure
}
Collections.sort(valueList);
for(int i=0;i<valueList.size();i++)
{
String temp=(String)valueList.get(i);
System.out.println("^^^^^value"+i+"="+temp); //the sequence is not sure
}
System.out.println("maxvalue"+"="+Collections.max(valueList));
System.out.println("minvalue"+"="+Collections.min(valueList));
Set set=hash.keySet();
System.out.println("set size="+set.size());
System.out.println("maxvalue"+"="+Collections.max(set));
System.out.println("minvalue"+"="+Collections.min(set));
targetPosition=Collections.binarySearch(valueList,"value3");
System.out.println("$$$$$$position of value3="+targetPosition);
targetPosition=Collections.binarySearch(valueList,"value1");
System.out.println("$$$$$$position of value1="+targetPosition);
HashMap hash0=new HashMap();
Set set0=hash0.keySet();
System.out.println("^^^^^^^^^set0="+set0.size());
if(!set0.isEmpty()){
int maxKey = ((Integer) Collections.max(set0)).intValue();
}
System.out.println("set0="+set0+"=========="+hash0.keySet());//This means: even if
//there is no value in hash0, hash0.keySet() will not return "null" ,
//that means set0 is not null, though set0 has no value.
//At this time , set0.isEmpty==true while set0.size()==0.
HashSet hset=new HashSet(set);
System.out.println("~~~hset size="+hset.size());
System.out.println("~~~hset maxvalue"+"="+Collections.max(hset));
System.out.println("~~~hset minvalue"+"="+Collections.min(hset));
}
}
练习使用HashMap:
import java.util.*;
public class TestHashmap{
public static void main(String[] args)
{
MapTest map=new MapTest();
map.printMap();
}
}
class MapTest{
HashMap hash=new HashMap();
public void printMap()
{
hash.put("1","value2");
hash.put("2",null);
hash.put("3","value3");
hash.put("4","value4");
String value=(String)hash.get("3");
System.out.println("key 3<===>"+value);
Set set=hash.keySet();
System.out.println("set size="+set.size());
Iterator it=set.iterator();
while(it.hasNext())
{
String temp2=(String)it.next();
System.out.println("keys contained:"+temp2);
}
Collection valuesList=hash.values();//no exception will be reported if collection
//has null values; instead, the null value will be printed as "null" if iterated.
System.out.println("valuesList size="+valuesList.size());
Iterator it2=valuesList.iterator();
while(it2.hasNext())
{
String temp2=(String)it2.next();
System.out.println("values contained:"+temp2);
}
List valueList=new ArrayList(hash.values());
for(int i=0;i<valueList.size();i++)
{
String temp=(String)valueList.get(i);
System.out.println("value"+i+"="+temp); //the sequence is not sure
//can not make sure that the values are displayed according to the input order
}
}
}
对于处理一列数据项,Java提供了两个类ArrayList和LinkedList,ArrayList的内部实现是基于内部数组Object[],所以 从概念上讲,它更象数组,但LinkedList的内部实现是基于一组连接的记录,所以,它更象一个链表结构,所以,它们在性能上有很大的差别。
(1) 从上面的分析可知,在ArrayList的前面或中间插入数据时,你必须将其后的所有数据相应的后移,这样必然要花费较多时间,所以,当你的操作是在一列 数据的后面添加数据而不是在前面或中间,并且需要随机地访问其中的元素时,使用ArrayList会提供比较好的性能。
(2)而访问链表中的某个元素时,就必须从链表的一端开始沿着连接方向一个一个元素地去查找,直到找到所需的元素为止,所以,当你的操作是在一列数据的前面或中间添加或删除数据,并且按照顺序访问其中的元素时,就应该使用LinkedList了。
(3)如果在编程中,1,2两种情形交替出现,这时,你可以考虑使用List这样的通用接口,而不用关心具体的实现,在具体的情形下,它的性能由具体的实现来保证。
设置集合类的初始大小
在Java 集合框架中的大部分类的大小是可以随着元素个数的增加而相应的增加的,我们似乎不用关心它的初始大小,但如果我们考虑类的性能问题时,就一定要考虑尽可能 地设置好集合对象的初始大小,这将大大提高代码的性能,比如,Hashtable缺省的初始大小为101,载入因子为0.75,即如果其中的元素个数超过 75个,它就必须增加大小并重新组织元素,所以,如果你知道在创建一个新的Hashtable对象时就知道元素的确切数目如为110,那么,就应将其初始 大小设为110/0.75=148,这样,就可以避免重新组织内存并增加大小。
线性表,链表,哈希表是常用的数据结构,在进行Java开发时,JDK已经为我们提供了一系列相应的类来实现基本的数据结构。这些类均在java.util包中。本文试图通过简单的描述,向读者阐述各个类的作用以及如何正确使用这些类。
Collection
├List
│├LinkedList
│├ArrayList
│└Vector
│ └Stack
└Set
├HashSet
├TreeSet
Map
├Hashtable
├TreeMap
├HashMap
└WeakHashMap
Collection接口
Collection是最基本的集合接口,一个Collection代表一组Object,即Collection的元素(Elements)。一些 Collection允许相同的元素而另一些不行。一些能排序而另一些不行。Java SDK不提供直接继承自Collection的类,Java SDK提供的类都是继承自Collection的“子接口”如List和Set。
所有实现Collection接口的类都必须提供两个标准的 构造函数:无参数的构造函数用于创建一个空的Collection,有一个Collection参数的构造函数用于创建一个新的Collection,这个新的Collection与传入的Collection有相同的元素。后一个构造函数允许用户复制一个Collection。
如何遍历Collection中的每一个元素?不论Collection的实际类型如何,它都支持一个iterator()的方法,该方法返回一个迭代子,使用该迭代子即可逐一访问Collection中每一个元素。典型的用法如下:
Iterator it = collection.iterator(); // 获得一个迭代子
while(it.hasNext()) {
Object obj = it.next(); // 得到下一个元素
}
由Collection接口派生的两个接口是List和Set。
List接口
List是有序的Collection,使用此接口能够精确的控制每个元素插入的位置。用户能够使用索引(元素在List中的位置,类似于数组下标)来访问List中的元素,这类似于Java的数组。
和Set不同是,List允许有相同的元素。除了具有Collection接口必备的iterator()方法外,List还提供一个listIterator()方法,返回一个 ListIterator接口,和标准的Iterator接口相比,ListIterator多了一些add()之类的方法,允许添加,删除,设定元素, 还能向前或向后遍历。
实现List接口的常用类有LinkedList,ArrayList,Vector和Stack。
LinkedList类
LinkedList实现了List接口,允许null元素。此外LinkedList提供额外的get,remove,insert方法在 LinkedList的首部或尾部。这些操作使LinkedList可被用作堆栈(stack),队列(queue)或双向队列(deque)。
注意LinkedList没有同步方法,即非线程安全。如果多个线程同时访问一个List,则必须自己实现访问同步。一种解决方法是在创建List时构造一个同步的List:
List list = Collections.synchronizedList(new LinkedList(...));
ArrayList类
ArrayList实现了可变大小的数组。它允许所有元素,包括null。ArrayList没有同步,即非线程安全。size,isEmpty,get,set方法运行时间为常数。但是add方法开销为分摊的常数,添加n个元素需要O(n)的时间。其他的方法运行时间为线性。
每个ArrayList实例都有一个容量(Capacity),即用于存储元素的数组的大小。这个容量可随着不断添加新元素而自动增加,但是增长算法并没有定义。当需要插入大量元素时,在插入前可以调用ensureCapacity方法来增加ArrayList的容量以提高插入效率。
和LinkedList一样,ArrayList也是非同步的(unsynchronized)。
Vector类
Vector非常类似ArrayList,但是Vector是同步的。由Vector创建的Iterator,虽然和ArrayList创建的 Iterator是同一接口,但是,因为Vector是同步的,当一个Iterator被创建而且正在被使用,另一个线程改变了Vector的状态(例如,添加或删除了一些元素),这时调用Iterator的方法时将抛出ConcurrentModificationException,因此必须捕获该异常。
Vector的方法都是同步的(Synchronized),是线程安全的(thread-safe),而ArrayList的方法不是,由于线程的同步必然要影响性能,因此,ArrayList的性能比Vector好。当Vector或ArrayList中的元素超过它的初始大小时,Vector会将它的容量翻倍,而ArrayList只增加50%的大小,这样,ArrayList就有利于节约内存空间。
Stack 类
Stack继承自Vector,实现一个后进先出的堆栈。Stack提供5个额外的方法使得Vector得以被当作堆栈使用。基本的push和pop方法,还有peek方法得到栈顶的元素,empty方法测试堆栈是否为空,search方法检测一个元素在堆栈中的位置。Stack刚创建后是空栈。
Set接口
Set是一种不包含重复的元素的Collection,即任意的两个元素e1和e2都有e1.equals(e2)=false,Set最多有一个null元素。很明显,Set的构造函数有一个约束条件,传入的Collection参数不能包含重复的元素。请注意:必须小心操作可变对象(Mutable Object)。如果一个Set中的可变元素改变了自身状态导致Object.equals(Object)=true将导致一些问题。
Set接口也是Collection的一种扩展,而与List不同的时,在Set中的对象元素不能重复,也就是说你不能把同样的东西两次放入同一个Set容器中。它的常用具体实现有HashSet和TreeSet类。HashSet能快速定位一个元素,但是你放到HashSet中的对象需要实现hashCode()方法,它使用了前面说过的哈希码的算法。而TreeSet则将放入其中的元素按序存放,这就要求你放入其中的对象是可排序的,这就用到了集合框架提供的另外两个实用类Comparable和Comparator。一个类是可排序的,它就应该实现Comparable接口。有时多个类具有相同的排序算法,那就不需要在每分别重复定义相同的排序算法,只要实现Comparator接口即可。集合框架中还有两个很实用的公用类:Collections和Arrays。Collections提供了对一个Collection容器进行诸如排序、复制、查找和填充等一些非常有用的方法,Arrays则是对一个数组进行类似的操作。
Map接口
请注意,Map没有继承Collection接口,Map提供key到value的映射。一个Map中不能包含相同的key,每个key只能映射一个value。Map接口提供3种集合的视图,Map的内容可以被当作一组key集合,一组value集合,或者一组key-value映射。
Hashtable类
Hashtable继承Map接口,实现一个key-value映射的哈希表。任何非空(non-null)的对象都可作为key或者value。添加数据使用put(key, value),取出数据使用get(key),这两个基本操作的时间开销为常数。Hashtable 通过initial capacity和load factor两个参数调整性能。通常缺省的load factor 0.75较好地实现了时间和空间的均衡。增大load factor可以节省空间但相应的查找时间将增大,这会影响像get和put这样的操作。使用Hashtable的简单示例如下,将1,2,3放到Hashtable中,他们的key分别是”one”,”two”,”three”:
Hashtable numbers = new Hashtable();
numbers.put(“one”, new Integer(1));
numbers.put(“two”, new Integer(2));
numbers.put(“three”, new Integer(3));
要取出一个数,比如2,用相应的key:
Integer n = (Integer)numbers.get(“two”);
System.out.println(“two = ” + n);
由于作为key的对象将通过计算其散列函数来确定与之对应的value的位置,因此任何作为key的对象都必须实现hashCode和equals方 法。hashCode和equals方法继承自根类Object,如果你用自定义的类当作key的话,要相当小心,按照散列函数的定义,如果两个对象相同,即obj1.equals(obj2)=true,则它们的hashCode必须相同,但如果两个对象不同,则它们的hashCode不一定不同,如果两个不同对象的hashCode相同,这种现象称为冲突,冲突会导致操作哈希表的时间开销增大,所以尽量定义好的hashCode()方法,能加快哈希表的操作。
如果相同的对象有不同的hashCode,对哈希表的操作会出现意想不到的结果(期待的get方法返回null),要避免这种问题,只需要牢记一条:要同时复写equals方法和hashCode方法,而不要只写其中一个。Hashtable是同步的。
TreeMap类
TreeMap则是对键按序存放,因此它便有一些扩展的方法,比如firstKey(),lastKey()等,你还可以从TreeMap中指定一个范围以取得其子Map。键和值的关联很简单,用pub(Object key,Object value)方法即可将一个键与一个值对象相关联。用get(Object key)可得到与此key对象所对应的值对象。
HashMap类
HashMap和Hashtable类似,不同之处在于HashMap是非同步的,并且允许null,即null value和null key。,但是将HashMap视为Collection时(values()方法可返回Collection),其迭代子操作时间开销和HashMap的容量成比例。因此,如果迭代操作的性能相当重要的话,不要将HashMap的初始化容量设得过高,或者load factor过低。
WeakHashMap类
WeakHashMap是一种改进的HashMap,它对key实行“弱引用”,如果一个key不再被外部所引用,那么该key可以被GC回收。
总结
如果涉及到堆栈,队列等操作,应该考虑用List,对于需要快速插入,删除元素,应该使用LinkedList,如果需要快速随机访问元素,应该使用ArrayList。
如果程序在单线程环境中,或者访问仅仅在一个线程中进行,考虑非同步的类,其效率较高,如果多个线程可能同时操作一个类,应该使用同步的类。
要特别注意对哈希表的操作,作为key的对象要正确复写equals和hashCode方法。
尽量返回接口而非实际的类型,如返回List而非ArrayList,这样如果以后需要将ArrayList换成LinkedList时,客户端代码不用改变。这就是针对抽象编程。
(参考:Sun JDK1.4.1 API DOC)
练习使用工具类Collections:
import java.util.*;
public class TestCollections{
public static void main(String[] args)
{
CollcetionsTest ct=new CollcetionsTest();
ct.printMap();
}
}
class CollcetionsTest{
HashMap hash=new HashMap();
public void printMap()
{
hash.put("1","value1");
hash.put("2","value2");
hash.put("3","value3");
hash.put("4","value4");
List valueList=new ArrayList(hash.values());
for(int i=0;i<valueList.size();i++)
{
String temp=(String)valueList.get(i);
System.out.println("value"+i+"="+temp); //the sequence is not sure
}
/*wrong useage coz list for binarySearch must be sorted(ascending or descending) first*/
int targetPosition=Collections.binarySearch(valueList,"value3");
System.out.println("$$$$$$position of value3="+targetPosition);
targetPosition=Collections.binarySearch(valueList,"value1");
System.out.println("$$$$$$position of value1="+targetPosition);
/* wrong usage*/
ArrayList testList=(ArrayList)valueList;
for(int i=0;i<testList.size();i++)
{
String temp=(String)testList.get(i);
System.out.println("********testList value"+i+"="+temp); //the sequence is not sure
}
Collections.sort(valueList);
for(int i=0;i<valueList.size();i++)
{
String temp=(String)valueList.get(i);
System.out.println("^^^^^value"+i+"="+temp); //the sequence is not sure
}
System.out.println("maxvalue"+"="+Collections.max(valueList));
System.out.println("minvalue"+"="+Collections.min(valueList));
Set set=hash.keySet();
System.out.println("set size="+set.size());
System.out.println("maxvalue"+"="+Collections.max(set));
System.out.println("minvalue"+"="+Collections.min(set));
targetPosition=Collections.binarySearch(valueList,"value3");
System.out.println("$$$$$$position of value3="+targetPosition);
targetPosition=Collections.binarySearch(valueList,"value1");
System.out.println("$$$$$$position of value1="+targetPosition);
HashMap hash0=new HashMap();
Set set0=hash0.keySet();
System.out.println("^^^^^^^^^set0="+set0.size());
if(!set0.isEmpty()){
int maxKey = ((Integer) Collections.max(set0)).intValue();
}
System.out.println("set0="+set0+"=========="+hash0.keySet());//This means: even if
//there is no value in hash0, hash0.keySet() will not return "null" ,
//that means set0 is not null, though set0 has no value.
//At this time , set0.isEmpty==true while set0.size()==0.
HashSet hset=new HashSet(set);
System.out.println("~~~hset size="+hset.size());
System.out.println("~~~hset maxvalue"+"="+Collections.max(hset));
System.out.println("~~~hset minvalue"+"="+Collections.min(hset));
}
}
练习使用HashMap:
import java.util.*;
public class TestHashmap{
public static void main(String[] args)
{
MapTest map=new MapTest();
map.printMap();
}
}
class MapTest{
HashMap hash=new HashMap();
public void printMap()
{
hash.put("1","value2");
hash.put("2",null);
hash.put("3","value3");
hash.put("4","value4");
String value=(String)hash.get("3");
System.out.println("key 3<===>"+value);
Set set=hash.keySet();
System.out.println("set size="+set.size());
Iterator it=set.iterator();
while(it.hasNext())
{
String temp2=(String)it.next();
System.out.println("keys contained:"+temp2);
}
Collection valuesList=hash.values();//no exception will be reported if collection
//has null values; instead, the null value will be printed as "null" if iterated.
System.out.println("valuesList size="+valuesList.size());
Iterator it2=valuesList.iterator();
while(it2.hasNext())
{
String temp2=(String)it2.next();
System.out.println("values contained:"+temp2);
}
List valueList=new ArrayList(hash.values());
for(int i=0;i<valueList.size();i++)
{
String temp=(String)valueList.get(i);
System.out.println("value"+i+"="+temp); //the sequence is not sure
//can not make sure that the values are displayed according to the input order
}
}
}
相关推荐
Java集合框架还包含了一些工具类,如`Collections`(提供对集合的静态方法)、`Iterator`(遍历集合元素)、`Comparator`(用于比较对象)等。这些工具极大地提高了代码的可读性和效率。 在实际应用中,选择合适的...
在这个“java集合练习题”中,我们主要关注如何使用Java集合框架来处理数据,特别是对于学生信息的存储、排序和输出。以下是对这个练习题的详细解析: 1. **集合框架简介**: Java集合框架是Java API的一部分,它...
本文将深入探讨Java集合框架的基础知识,包括接口、类、以及它们在实际开发中的应用。 首先,Java集合框架由一系列接口和实现这些接口的类组成。主要的接口有`List`、`Set`和`Queue`,它们各自代表了不同特性的数据...
Java集合框架还包含了一些工具类,如`Collections`(提供了对集合的各种操作,如排序、填充和反转)、`Comparator`(用于自定义元素比较逻辑)和`Iterator`(遍历集合元素的接口)。 至于集合排序,Java提供了两种...
Java 集合排序及java 集合类详解,Java里面最重要、最常用也就是集合那部分了,能够用好集合和理解好集合对于做Java程序的开发拥有无比的好处。本教程详细解释了关于Java中的集合是如何实现的, 以及他们的实现原理...
### Java集合排序及Java集合类详解 #### 一、集合框架概述 集合框架是Java编程语言的核心组件之一,用于组织和操作数据集。Java集合框架提供了多种数据结构,包括列表(List)、集(Set)和映射(Map),这些数据结构...
Java集合框架是Java编程语言中的一个核心组成部分,它为数据存储和操作提供了丰富的接口和类。在本篇中,我们将深入探讨Java集合的排序机制以及集合类的详细使用。 首先,我们来了解一下Java集合的基本分类。Java...
Java集合框架是Java编程语言中不可或缺的一部分,它提供了一组高效的数据结构和算法,使得开发者可以方便地存储和管理对象。这份"Java集合思维导图.xmind.zip"压缩包文件,显然旨在帮助学习者深入理解Java集合框架的...
### Java集合框架总结 #### 一、Java集合框架概述 Java集合框架是Java标准库的一部分,它提供了一系列的接口和类来存储和操作各种类型的对象集合。这些接口和类遵循一致的设计模式,使得开发人员可以方便地管理和...
【Java集合】 Java集合框架是Java编程语言中用于存储和操作对象的工具,它提供了多种数据结构,如列表、集、映射等,以适应不同的数据处理需求。集合类通常位于`java.util`包下,是Java程序员必备的知识点。 1. **...
Java集合整体讲解,其中包含了Collection,Map,Iterator和一些工具类,以及集合整体大框架
xmind格式的Java集合框架学习导图,包括Collection接口/Map接口以及具体实现类。 同样包含大厂面试题,也在导图中有所体现。 能学到什么: 更加成体系的知识框架,更加全面的、系统的知识。 思维导图: 思维导图具有...
Java集合框架是Java编程语言中一个非常重要的组成部分,它为开发者提供了存储和操作对象的统一接口和类。这个框架使得处理各种数据结构变得更加方便和高效。在这个“java集合框架的使用”主题中,我们将深入探讨如何...
Java 集合类详解 Java 集合类是 Java 语言中的一种基本数据结构,用于存储和操作大量数据。集合类可以分为三大类:Collection、List 和 Set。 Collection 是集合框架中的根接口,提供了基本的集合操作,如 add、...
该文档主要详细总结了Java集合的相关知识,包括Collection和Map接口、Collection接口的子接口List和Set接口以及具体的实现类、存储原理等;Map接口的子接口HashMap、LinkedHashMap、TreeMap、Properties等
### Java集合知识大全 #### 一、集合概述 在Java编程语言中,集合是一组用于存储其他对象的对象。集合框架提供了多种数据结构,用于管理不同类型的数据。这些数据结构包括列表(List)、集(Set)、映射(Map)等,每种...
Java集合框架是Java编程语言中不可或缺的一部分,它提供了一组接口和类,用于高效地存储、管理和操作数据。这个“一个讲解很清晰的Java集合框架PPT”显然是一个对外公开的教育资源,旨在帮助学习者深入理解Java集合...