`
jackyhongvip
  • 浏览: 159622 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

阻塞同步 lock

    博客分类:
  • j2se
 
阅读更多

转自:http://blog.csdn.net/chen77716/article/details/6641477

 

前文(深入JVM锁机制-synchronized)分析了JVM中的synchronized实现,本文继续分析JVM中的另一种锁Lock的实现。与synchronized不同的是,Lock完全用Java写成,在java这个层面是无关JVM实现的。

在java.util.concurrent.locks包中有很多Lock的实现类,常用的有ReentrantLock、ReadWriteLock(实现类ReentrantReadWriteLock),其实现都依赖java.util.concurrent.AbstractQueuedSynchronizer类,实现思路都大同小异,因此我们以ReentrantLock作为讲解切入点。

1. ReentrantLock的调用过程

经过观察ReentrantLock把所有Lock接口的操作都委派到一个Sync类上,该类继承了AbstractQueuedSynchronizer:

[java] view plaincopy
  1. static abstract class Sync extends AbstractQueuedSynchronizer  

Sync又有两个子类:

[java] view plaincopy
  1. final static class NonfairSync extends Sync  
[java] view plaincopy
  1. final static class FairSync extends Sync  

显然是为了支持公平锁和非公平锁而定义,默认情况下为非公平锁。

先理一下Reentrant.lock()方法的调用过程(默认非公平锁):

这些讨厌的Template模式导致很难直观的看到整个调用过程,其实通过上面调用过程及AbstractQueuedSynchronizer的注释可以发现,AbstractQueuedSynchronizer中抽象了绝大多数Lock的功能,而只把tryAcquire方法延迟到子类中实现。tryAcquire方法的语义在于用具体子类判断请求线程是否可以获得锁,无论成功与否AbstractQueuedSynchronizer都将处理后面的流程。

2. 锁实现(加锁)

简单说来,AbstractQueuedSynchronizer会把所有的请求线程构成一个CLH队列,当一个线程执行完毕(lock.unlock())时会激活自己的后继节点,但正在执行的线程并不在队列中,而那些等待执行的线程全部处于阻塞状态,经过调查线程的显式阻塞是通过调用LockSupport.park()完成,而LockSupport.park()则调用sun.misc.Unsafe.park()本地方法,再进一步,HotSpot在Linux中中通过调用pthread_mutex_lock函数把线程交给系统内核进行阻塞。

该队列如图:

与synchronized相同的是,这也是一个虚拟队列,不存在队列实例,仅存在节点之间的前后关系。令人疑惑的是为什么采用CLH队列呢?原生的CLH队列是用于自旋锁,但Doug Lea把其改造为阻塞锁。

当有线程竞争锁时,该线程会首先尝试获得锁,这对于那些已经在队列中排队的线程来说显得不公平,这也是非公平锁的由来,与synchronized实现类似,这样会极大提高吞吐量。

如果已经存在Running线程,则新的竞争线程会被追加到队尾,具体是采用基于CAS的Lock-Free算法,因为线程并发对Tail调用CAS可能会导致其他线程CAS失败,解决办法是循环CAS直至成功。AbstractQueuedSynchronizer的实现非常精巧,令人叹为观止,不入细节难以完全领会其精髓,下面详细说明实现过程:

2.1 Sync.nonfairTryAcquire

nonfairTryAcquire方法将是lock方法间接调用的第一个方法,每次请求锁时都会首先调用该方法。

[java] view plaincopy
  1. final boolean nonfairTryAcquire(int acquires) {  
  2.     final Thread current = Thread.currentThread();  
  3.     int c = getState();  
  4.     if (c == 0) {  
  5.         if (compareAndSetState(0, acquires)) {  
  6.             setExclusiveOwnerThread(current);  
  7.             return true;  
  8.         }  
  9.     }  
  10.     else if (current == getExclusiveOwnerThread()) {  
  11.         int nextc = c + acquires;  
  12.         if (nextc < 0// overflow  
  13.             throw new Error("Maximum lock count exceeded");  
  14.         setState(nextc);  
  15.         return true;  
  16.     }  
  17.     return false;  
  18. }  

该方法会首先判断当前状态,如果c==0说明没有线程正在竞争该锁,如果不c !=0 说明有线程正拥有了该锁。

如果发现c==0,则通过CAS设置该状态值为acquires,acquires的初始调用值为1,每次线程重入该锁都会+1,每次unlock都会-1,但为0时释放锁。如果CAS设置成功,则可以预计其他任何线程调用CAS都不会再成功,也就认为当前线程得到了该锁,也作为Running线程,很显然这个Running线程并未进入等待队列。

如果c !=0 但发现自己已经拥有锁,只是简单地++acquires,并修改status值,但因为没有竞争,所以通过setStatus修改,而非CAS,也就是说这段代码实现了偏向锁的功能,并且实现的非常漂亮。

2.2 AbstractQueuedSynchronizer.addWaiter

 

 

 

 

addWaiter方法负责把当前无法获得锁的线程包装为一个Node添加到队尾:

[java] view plaincopy
  1. private Node addWaiter(Node mode) {  
  2.     Node node = new Node(Thread.currentThread(), mode);  
  3.     // Try the fast path of enq; backup to full enq on failure  
  4.     Node pred = tail;  
  5.     if (pred != null) {  
  6.         node.prev = pred;  
  7.         if (compareAndSetTail(pred, node)) {  
  8.             pred.next = node;  
  9.             return node;  
  10.         }  
  11.     }  
  12.     enq(node);  
  13.     return node;  
  14. }  

其中参数mode是独占锁还是共享锁,默认为null,独占锁。追加到队尾的动作分两步:

  1. 如果当前队尾已经存在(tail!=null),则使用CAS把当前线程更新为Tail
  2. 如果当前Tail为null或则线程调用CAS设置队尾失败,则通过enq方法继续设置Tail

下面是enq方法:

[java] view plaincopy
  1. private Node enq(final Node node) {  
  2.     for (;;) {  
  3.         Node t = tail;  
  4.         if (t == null) { // Must initialize  
  5.             Node h = new Node(); // Dummy header  
  6.             h.next = node;  
  7.             node.prev = h;  
  8.             if (compareAndSetHead(h)) {  
  9.                 tail = node;  
  10.                 return h;  
  11.             }  
  12.         }  
  13.         else {  
  14.             node.prev = t;  
  15.             if (compareAndSetTail(t, node)) {  
  16.                 t.next = node;  
  17.                 return t;  
  18.             }  
  19.         }  
  20.     }  
  21. }  


该方法就是循环调用CAS,即使有高并发的场景,无限循环将会最终成功把当前线程追加到队尾(或设置队头)。总而言之,addWaiter的目的就是通过CAS把当前现在追加到队尾,并返回包装后的Node实例。

把线程要包装为Node对象的主要原因,除了用Node构造供虚拟队列外,还用Node包装了各种线程状态,这些状态被精心设计为一些数字值:

  • SIGNAL(-1) :线程的后继线程正/已被阻塞,当该线程release或cancel时要重新这个后继线程(unpark)
  • CANCELLED(1):因为超时或中断,该线程已经被取消
  • CONDITION(-2):表明该线程被处于条件队列,就是因为调用了Condition.await而被阻塞
  • PROPAGATE(-3):传播共享锁
  • 0:0代表无状态

2.3 AbstractQueuedSynchronizer.acquireQueued

acquireQueued的主要作用是把已经追加到队列的线程节点(addWaiter方法返回值)进行阻塞,但阻塞前又通过tryAccquire重试是否能获得锁,如果重试成功能则无需阻塞,直接返回

[java] view plaincopy
  1. final boolean acquireQueued(final Node node, int arg) {  
  2.     try {  
  3.         boolean interrupted = false;  
  4.         for (;;) {  
  5.             final Node p = node.predecessor();  
  6.             if (p == head && tryAcquire(arg)) {  
  7.                 setHead(node);  
  8.                 p.next = null// help GC  
  9.                 return interrupted;  
  10.             }  
  11.             if (shouldParkAfterFailedAcquire(p, node) &&  
  12.                 parkAndCheckInterrupt())  
  13.                 interrupted = true;  
  14.         }  
  15.     } catch (RuntimeException ex) {  
  16.         cancelAcquire(node);  
  17.         throw ex;  
  18.     }  
  19. }  


仔细看看这个方法是个无限循环,感觉如果p == head && tryAcquire(arg)条件不满足循环将永远无法结束,当然不会出现死循环,奥秘在于第12行的parkAndCheckInterrupt会把当前线程挂起,从而阻塞住线程的调用栈。

[java] view plaincopy
  1. private final boolean parkAndCheckInterrupt() {  
  2.     LockSupport.park(this);  
  3.     return Thread.interrupted();  
  4. }  

如前面所述,LockSupport.park最终把线程交给系统(Linux)内核进行阻塞。当然也不是马上把请求不到锁的线程进行阻塞,还要检查该线程的状态,比如如果该线程处于Cancel状态则没有必要,具体的检查在shouldParkAfterFailedAcquire中:

[java] view plaincopy
  1.   private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {  
  2.       int ws = pred.waitStatus;  
  3.       if (ws == Node.SIGNAL)  
  4.           /* 
  5.            * This node has already set status asking a release 
  6.            * to signal it, so it can safely park 
  7.            */  
  8.           return true;  
  9.       if (ws > 0) {  
  10.           /* 
  11.            * Predecessor was cancelled. Skip over predecessors and 
  12.            * indicate retry. 
  13.            */  
  14.    do {  
  15. node.prev = pred = pred.prev;  
  16.    } while (pred.waitStatus > 0);  
  17.    pred.next = node;  
  18.       } else {  
  19.           /* 
  20.            * waitStatus must be 0 or PROPAGATE. Indicate that we 
  21.            * need a signal, but don't park yet. Caller will need to 
  22.            * retry to make sure it cannot acquire before parking.  
  23.            */  
  24.           compareAndSetWaitStatus(pred, ws, Node.SIGNAL);  
  25.       }   
  26.       return false;  
  27.   }  

检查原则在于:

  • 规则1:如果前继的节点状态为SIGNAL,表明当前节点需要unpark,则返回成功,此时acquireQueued方法的第12行(parkAndCheckInterrupt)将导致线程阻塞
  • 规则2:如果前继节点状态为CANCELLED(ws>0),说明前置节点已经被放弃,则回溯到一个非取消的前继节点,返回false,acquireQueued方法的无限循环将递归调用该方法,直至规则1返回true,导致线程阻塞
  • 规则3:如果前继节点状态为非SIGNAL、非CANCELLED,则设置前继的状态为SIGNAL,返回false后进入acquireQueued的无限循环,与规则2同

总体看来,shouldParkAfterFailedAcquire就是靠前继节点判断当前线程是否应该被阻塞,如果前继节点处于CANCELLED状态,则顺便删除这些节点重新构造队列。

至此,锁住线程的逻辑已经完成,下面讨论解锁的过程。

3. 解锁

请求锁不成功的线程会被挂起在acquireQueued方法的第12行,12行以后的代码必须等线程被解锁锁才能执行,假如被阻塞的线程得到解锁,则执行第13行,即设置interrupted = true,之后又进入无限循环。

从无限循环的代码可以看出,并不是得到解锁的线程一定能获得锁,必须在第6行中调用tryAccquire重新竞争,因为锁是非公平的,有可能被新加入的线程获得,从而导致刚被唤醒的线程再次被阻塞,这个细节充分体现了“非公平”的精髓。通过之后将要介绍的解锁机制会看到,第一个被解锁的线程就是Head,因此p == head的判断基本都会成功。

至此可以看到,把tryAcquire方法延迟到子类中实现的做法非常精妙并具有极强的可扩展性,令人叹为观止!当然精妙的不是这个Templae设计模式,而是Doug Lea对锁结构的精心布局。

解锁代码相对简单,主要体现在AbstractQueuedSynchronizer.release和Sync.tryRelease方法中:

class AbstractQueuedSynchronizer

[java] view plaincopy
  1. public final boolean release(int arg) {  
  2.     if (tryRelease(arg)) {  
  3.         Node h = head;  
  4.         if (h != null && h.waitStatus != 0)  
  5.             unparkSuccessor(h);  
  6.         return true;  
  7.     }  
  8.     return false;  
  9. }  

class Sync

[java] view plaincopy
  1. protected final boolean tryRelease(int releases) {  
  2.     int c = getState() - releases;  
  3.     if (Thread.currentThread() != getExclusiveOwnerThread())  
  4.         throw new IllegalMonitorStateException();  
  5.     boolean free = false;  
  6.     if (c == 0) {  
  7.         free = true;  
  8.         setExclusiveOwnerThread(null);  
  9.     }  
  10.     setState(c);  
  11.     return free;  
  12. }  


tryRelease与tryAcquire语义相同,把如何释放的逻辑延迟到子类中。tryRelease语义很明确:如果线程多次锁定,则进行多次释放,直至status==0则真正释放锁,所谓释放锁即设置status为0,因为无竞争所以没有使用CAS。

release的语义在于:如果可以释放锁,则唤醒队列第一个线程(Head),具体唤醒代码如下:

[java] view plaincopy
  1. private void unparkSuccessor(Node node) {  
  2.     /* 
  3.      * If status is negative (i.e., possibly needing signal) try 
  4.      * to clear in anticipation of signalling. It is OK if this 
  5.      * fails or if status is changed by waiting thread. 
  6.      */  
  7.     int ws = node.waitStatus;  
  8.     if (ws < 0)  
  9.         compareAndSetWaitStatus(node, ws, 0);   
  10.   
  11.     /* 
  12.      * Thread to unpark is held in successor, which is normally 
  13.      * just the next node.  But if cancelled or apparently null, 
  14.      * traverse backwards from tail to find the actual 
  15.      * non-cancelled successor. 
  16.      */  
  17.     Node s = node.next;  
  18.     if (s == null || s.waitStatus > 0) {  
  19.         s = null;  
  20.         for (Node t = tail; t != null && t != node; t = t.prev)  
  21.             if (t.waitStatus <= 0)  
  22.                 s = t;  
  23.     }  
  24.     if (s != null)  
  25.         LockSupport.unpark(s.thread);  
  26. }  


这段代码的意思在于找出第一个可以unpark的线程,一般说来head.next == head,Head就是第一个线程,但Head.next可能被取消或被置为null,因此比较稳妥的办法是从后往前找第一个可用线程。貌似回溯会导致性能降低,其实这个发生的几率很小,所以不会有性能影响。之后便是通知系统内核继续该线程,在Linux下是通过pthread_mutex_unlock完成。之后,被解锁的线程进入上面所说的重新竞争状态。

4. Lock VS Synchronized

AbstractQueuedSynchronizer通过构造一个基于阻塞的CLH队列容纳所有的阻塞线程,而对该队列的操作均通过Lock-Free(CAS)操作,但对已经获得锁的线程而言,ReentrantLock实现了偏向锁的功能。

synchronized的底层也是一个基于CAS操作的等待队列,但JVM实现的更精细,把等待队列分为ContentionList和EntryList,目的是为了降低线程的出列速度;当然也实现了偏向锁,从数据结构来说二者设计没有本质区别。但synchronized还实现了自旋锁,并针对不同的系统和硬件体系进行了优化,而Lock则完全依靠系统阻塞挂起等待线程。

当然Lock比synchronized更适合在应用层扩展,可以继承AbstractQueuedSynchronizer定义各种实现,比如实现读写锁(ReadWriteLock),公平或不公平锁;同时,Lock对应的Condition也比wait/notify要方便的多、灵活的多。

分享到:
评论

相关推荐

    c# 线程同步: 详解lock,monitor,同步事件和等待句柄以及mutex

    C#提供了多种机制来实现线程同步,包括lock关键字、Monitor、同步事件和等待句柄以及Mutex类。这些机制的主要目标是避免竞态条件,保证并发执行的线程能够正确地访问和修改共享数据。 首先,我们来看lock关键字。...

    lock(this)的使用说明

    lock(this)是C#语言中的一种同步机制,用于确保在多线程环境下对共享资源的访问安全。通过使用lock(this)语句,可以保证在同一时刻只有一个线程可以访问某个资源,防止多个线程同时访问同一个资源而导致的数据不...

    C# Lock实例

    `Lock`关键字创建了一个同步块,当一个线程进入该同步块时,它会获取对该资源的锁,其他试图进入同一同步块的线程会被阻塞,直到持有锁的线程退出同步块并释放锁。这保证了在同一时刻只有一个线程能够执行特定的代码...

    C#中使用Monitor类、Lock和Mutex类来同步多线程的执行.pdf

    为了解决这些问题,C#提供了多种同步原语,如Monitor类、Lock关键字和Mutex类。 Monitor类是.NET Framework中用于同步线程访问共享资源的一种方式。Monitor依靠内置锁实现线程同步,当一个线程访问某个对象时,它会...

    java 中同步、异步、阻塞和非阻塞区别详解

    在Java中,可以使用`synchronized`关键字或`Lock`接口来实现同步。同步确保了一个时刻只有一个线程能执行某段代码,保证了数据的一致性和完整性,但可能会影响程序的并发性能。 2. **异步**: 异步与同步相对,它...

    .NET LOCK使用方法

    - 使用Lock时应确保不会在lock语句中调用外部方法,特别是那些可能会被长时间阻塞的方法。因为这将导致持有锁的线程无法及时释放锁,影响程序性能。 - 不要使用静态对象或公共对象作为锁对象,因为这可能会导致死锁...

    Python多线程同步Lock、RLock、Semaphore、Event实例

    Python中的多线程同步机制是为了在并发环境下保护共享资源,防止数据不一致和死锁等问题。在Python中,由于GIL(全局解释器锁)的存在,多线程并不能充分利用多核CPU的优势,但在处理I/O密集型任务时,多线程仍然是...

    c#线程 lock用法

    当一个线程进入`lock`代码块时,它会获取到互斥量的锁,其他尝试获取同一锁的线程会被阻塞,直到拥有锁的线程离开该代码块。这确保了在同一时刻,只有一个线程可以执行被`lock`包围的代码。 例如: ```csharp ...

    Lock的使用.rar

    `Lock`是.NET框架提供的一种同步机制,用于确保对共享资源的互斥访问,防止数据异常和线程竞态条件。本篇文章将深入探讨`Lock`的使用以及它如何帮助解决并发问题。 1. **什么是Lock?** `Lock`是C#中的一种同步...

    C#中实现线程同步lock关键字的用法详解

    当一个线程进入`lock`块,它会获取锁,其他试图进入的线程将被阻塞,直到锁被释放。 2. **`lock`关键字的语法** `lock`关键字要求一个对象引用作为参数,例如: ```csharp lock (object) { // 临界区代码 } `...

    C# lock一个简单实例

    虽然`lock`提供了强大的线程同步能力,但过度使用或不当使用锁也可能导致性能问题,如死锁或过多的线程阻塞。因此,在设计并发程序时,开发者应仔细考虑锁的使用,寻找平衡点,以实现既高效又安全的并发控制。 ### ...

    c#lock 演示代码

    在C#编程语言中,`lock`语句是一种同步机制,用于实现线程之间的互斥访问,确保在多线程环境中资源的安全访问。本篇将深入探讨`lock`的使用,以及它在并发编程中的作用。 `lock`关键字是C#中实现线程同步的关键工具...

    YurunLock PHP阻塞锁和非阻塞锁

    对于非阻塞锁,可以使用`tryLock`方法,它不会阻塞等待,而是立即返回结果: ```php $lock = new \Yurun\Util\YurunLock\RedisLock('myLock'); if ($lock-&gt;tryLock()) { // 临界区 // ... $lock-&gt;unlock(); } ...

    Java中的Lock接口及其实现:深度解析与代码示例

    Lock接口位于java.util.concurrent.locks包中,它允许更复杂的同步需求,如尝试非阻塞获取锁、可中断的锁获取、超时获取锁以及公平性控制等。 Lock接口及其实现类ReentrantLock是Java并发编程中的重要工具,它们提供...

    C#实操控制并发之Lock和Redis分布式锁

    在这个例子中,`lockObject`作为同步根,确保在同一时刻只有一个线程能进入临界区。如果其他线程试图进入,它们会被阻塞,直到持有锁的线程离开临界区。 然而,当系统扩展到分布式环境时,单机的Lock就无法满足需求...

    Java异步调用转同步方法实例详解

    Java异步调用转同步方法实例详解是指在Java中将异步调用转换为同步调用的技术,主要用于解决异步调用过程中的阻塞问题。异步调用是一种非阻塞的调用方式,调用方在调用过程中,不直接等待返回结果,而是执行其他任务...

    第四节(Lock关键字用法)

    在Java编程语言中,`Lock`关键字是多线程编程中的一个重要概念,它提供了一种比内置锁(synchronized)更灵活的同步机制。在深入理解`Lock`关键字的用法之前,我们先来了解一些多线程的基础知识。 多线程是现代...

    C#中使用Monitor类、Lock和Mutex类来同步多线程的执行[收集].pdf

    总结来说,`Monitor`和`Lock`主要用于线程内的同步,而`Mutex`适用于跨进程同步。选择哪种机制取决于具体的需求,如是否需要跨进程同步,以及控制粒度的大小。在实际开发中,正确使用这些同步工具能够有效地防止数据...

Global site tag (gtag.js) - Google Analytics