`
jackroomage
  • 浏览: 1232600 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类

Oracle SQL性能优化

 
阅读更多

Oracle SQL性能优化

(1)      选择最有效率的表名顺序(只在基于规则的优化器中有效):
ORACLE的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写在最后的表(基础表 driving table)将被最先处理,在FROM子句中包含多个表的情况下,你必须选择记录条数最少的表作为基础表。如果有3个以上的表连接查询, 那就需要选择交叉表(intersection table)作为基础表, 交叉表是指那个被其他表所引用的表.
(2)      WHERE子句中的连接顺序.:
ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前, 那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾.
(3)      SELECT子句中避免使用 ‘ * ‘:
ORACLE在解析的过程中, 会将'*' 依次转换成所有的列名, 这个工作是通过查询数据字典完成的, 这意味着将耗费更多的时间
(4)      减少访问数据库的次数:
ORACLE在内部执行了许多工作: 解析SQL语句, 估算索引的利用率, 绑定变量 , 读数据块等;
(5)      在SQL*Plus , SQL*Forms和Pro*C中重新设置ARRAYSIZE参数, 可以增加每次数据库访问的检索数据量 ,建议值为200
(6)      使用DECODE函数来减少处理时间:
使用DECODE函数可以避免重复扫描相同记录或重复连接相同的表.
(7)      整合简单,无关联的数据库访问:
如果你有几个简单的数据库查询语句,你可以把它们整合到一个查询中(即使它们之间没有关系)
(8)      删除重复记录:
最高效的删除重复记录方法 ( 因为使用了ROWID)例子:
DELETE  FROM  EMP E  WHERE  E.ROWID > (SELECT MIN(X.ROWID)
FROM  EMP X  WHERE  X.EMP_NO = E.EMP_NO);
(9)      用TRUNCATE替代DELETE:
当删除表中的记录时,在通常情况下, 回滚段(rollback segments ) 用来存放可以被恢复的信息. 如果你没有COMMIT事务,ORACLE会将数据恢复到删除之前的状态(准确地说是恢复到执行删除命令之前的状况) 而当运用TRUNCATE时, 回滚段不再存放任何可被恢复的信息.当命令运行后,数据不能被恢复.因此很少的资源被调用,执行时间也会很短. (译者按: TRUNCATE只在删除全表适用,TRUNCATE是DDL不是DML)
(10) 尽量多使用COMMIT:
只要有可能,在程序中尽量多使用COMMIT, 这样程序的性能得到提高,需求也会因为COMMIT所释放的资源而减少:
COMMIT所释放的资源:
a. 回滚段上用于恢复数据的信息.
b. 被程序语句获得的锁
c. redo log buffer 中的空间
d. ORACLE为管理上述3种资源中的内部花费
(11) 用Where子句替换HAVING子句:
避免使用HAVING子句, HAVING 只会在检索出所有记录之后才对结果集进行过滤. 这个处理需要排序,总计等操作. 如果能通过WHERE子句限制记录的数目,那就能减少这方面的开销. (非oracle中)on、where、having这三个都可以加条件的子句中,on是最先执行,where次之,having最后,因为on是先把不 符合条件的记录过滤后才进行统计,它就可以减少中间运算要处理的数据,按理说应该速度是最快的,where也应该比having快点的,因为它过滤数据后 才进行sum,在两个表联接时才用on的,所以在一个表的时候,就剩下where跟having比较了。在这单表查询统计的情况下,如果要过滤的条件没有 涉及到要计算字段,那它们的结果是一样的,只是where可以使用rushmore技术,而having就不能,在速度上后者要慢如果要涉及到计算的字 段,就表示在没计算之前,这个字段的值是不确定的,根据上篇写的工作流程,where的作用时间是在计算之前就完成的,而having就是在计算后才起作 用的,所以在这种情况下,两者的结果会不同。在多表联接查询时,on比where更早起作用。系统首先根据各个表之间的联接条件,把多个表合成一个临时表 后,再由where进行过滤,然后再计算,计算完后再由having进行过滤。由此可见,要想过滤条件起到正确的作用,首先要明白这个条件应该在什么时候 起作用,然后再决定放在那里
(12) 减少对表的查询:
在含有子查询的SQL语句中,要特别注意减少对表的查询.例子:
     SELECT  TAB_NAME FROM TABLES WHERE (TAB_NAME,DB_VER) = ( SELECT
TAB_NAME,DB_VER FROM  TAB_COLUMNS  WHERE  VERSION = 604)
(13) 通过内部函数提高SQL效率.:
复杂的SQL往往牺牲了执行效率. 能够掌握上面的运用函数解决问题的方法在实际工作中是非常有意义的
(14) 使用表的别名(Alias):
当在SQL语句中连接多个表时, 请使用表的别名并把别名前缀于每个Column上.这样一来,就可以减少解析的时间并减少那些由Column歧义引起的语法错误.
(15) 用EXISTS替代IN、用NOT EXISTS替代NOT IN:
在许多基于基础表的查询中,为了满足一个条件,往往需要对另一个表进行联接.在这种情况下, 使用EXISTS(或NOT EXISTS)通常将提高查询的效率. 在子查询中,NOT IN子句将执行一个内部的排序和合并. 无论在哪种情况下,NOT IN都是最低效的 (因为它对子查询中的表执行了一个全表遍历). 为了避免使用NOT IN ,我们可以把它改写成外连接(Outer Joins)或NOT EXISTS.
例子:
(高效)SELECT * FROM  EMP (基础表)  WHERE  EMPNO > 0  AND  EXISTS (SELECT ‘X'  FROM DEPT  WHERE  DEPT.DEPTNO = EMP.DEPTNO  AND  LOC = ‘MELB')
(低效)SELECT  * FROM  EMP (基础表)  WHERE  EMPNO > 0  AND  DEPTNO IN(SELECT DEPTNO  FROM  DEPT  WHERE  LOC = ‘MELB')
(16) 识别'低效执行'的SQL语句:
虽然目前各种关于SQL优化的图形化工具层出不穷,但是写出自己的SQL工具来解决问题始终是一个最好的方法:
SELECT  EXECUTIONS , DISK_READS, BUFFER_GETS,
ROUND((BUFFER_GETS-DISK_READS)/BUFFER_GETS,2) Hit_radio,
ROUND(DISK_READS/EXECUTIONS,2) Reads_per_run,
SQL_TEXT
FROM  V$SQLAREA
WHERE  EXECUTIONS>0
AND  BUFFER_GETS > 0
AND  (BUFFER_GETS-DISK_READS)/BUFFER_GETS < 0.8
ORDER BY  4 DESC;

 

(17) 用索引提高效率:
索引是表的一个概念部分,用来提高检索数据的效率,ORACLE使用了一个复杂的自平衡B-tree结构. 通常,通过索引查询数据比全表扫描要快. 当ORACLE找出执行查询和Update语句的最佳路径时, ORACLE优化器将使用索引. 同样在联结多个表时使用索引也可以提高效率. 另一个使用索引的好处是,它提供了主键(primary key)的唯一性验证.。那些LONG或LONG RAW数据类型, 你可以索引几乎所有的列. 通常, 在大型表中使用索引特别有效. 当然,你也会发现, 在扫描小表时,使用索引同样能提高效率. 虽然使用索引能得到查询效率的提高,但是我们也必须注意到它的代价. 索引需要空间来存储,也需要定期维护, 每当有记录在表中增减或索引列被修改时, 索引本身也会被修改. 这意味着每条记录的INSERT , DELETE , UPDATE将为此多付出4 , 5 次的磁盘I/O . 因为索引需要额外的存储空间和处理,那些不必要的索引反而会使查询反应时间变慢.。定期的重构索引是有必要的.:
ALTER  INDEX <INDEXNAME> REBUILD <TABLESPACENAME>
(18)

用EXISTS替换DISTINCT:
当提交一个包含一对多表信息(比如部门表和雇员表)的查询时,避免在SELECT子句中使用DISTINCT. 一般可以考虑用EXIST替换, EXISTS 使查询更为迅速,因为RDBMS核心模块将在子查询的条件一旦满足后,立刻返回结果. 例子:
       (低效):
SELECT  DISTINCT  DEPT_NO,DEPT_NAME  FROM  DEPT D , EMP E
WHERE  D.DEPT_NO = E.DEPT_NO
(高效):
SELECT  DEPT_NO,DEPT_NAME  FROM  DEPT D  WHERE  EXISTS ( SELECT ‘X'
FROM  EMP E  WHERE E.DEPT_NO = D.DEPT_NO);
(19) sql语句用大写的;因为oracle总是先解析sql语句,把小写的字母转换成大写的再执行
(20) 在java代码中尽量少用连接符“+”连接字符串!
(21) 避免在索引列上使用NOT 通常, 
我们要避免在索引列上使用NOT, NOT会产生在和在索引列上使用函数相同的影响. 当ORACLE”遇到”NOT,他就会停止使用索引转而执行全表扫描.
(22) 避免在索引列上使用计算.
WHERE子句中,如果索引列是函数的一部分.优化器将不使用索引而使用全表扫描.
举例:
低效:
SELECT … FROM  DEPT  WHERE SAL * 12 > 25000;
高效:
SELECT … FROM DEPT WHERE SAL > 25000/12;
(23) 用>=替代>
高效:
SELECT * FROM  EMP  WHERE  DEPTNO >=4
低效:
SELECT * FROM EMP WHERE DEPTNO >3
两者的区别在于, 前者DBMS将直接跳到第一个DEPT等于4的记录而后者将首先定位到DEPTNO=3的记录并且向前扫描到第一个DEPT大于3的记录.
(24) 用UNION替换OR (适用于索引列)
通常情况下, 用UNION替换WHERE子句中的OR将会起到较好的效果. 对索引列使用OR将造成全表扫描. 注意, 以上规则只针对多个索引列有效. 如果有column没有被索引, 查询效率可能会因为你没有选择OR而降低. 在下面的例子中, LOC_ID 和REGION上都建有索引.
高效:
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE LOC_ID = 10
UNION
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE REGION = “MELBOURNE”
低效:
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE LOC_ID = 10 OR REGION = “MELBOURNE”
如果你坚持要用OR, 那就需要返回记录最少的索引列写在最前面.
(25) 用IN来替换OR  
这是一条简单易记的规则,但是实际的执行效果还须检验,在ORACLE8i下,两者的执行路径似乎是相同的. 
低效:
SELECT…. FROM LOCATION WHERE LOC_ID = 10 OR LOC_ID = 20 OR LOC_ID = 30
高效
SELECT… FROM LOCATION WHERE LOC_IN  IN (10,20,30);
(26) 避免在索引列上使用IS NULL和IS NOT NULL
避免在索引中使用任何可以为空的列,ORACLE将无法使用该索引.对于单列索引,如果列包含空值,索引中将不存在此记录. 对于复合索引,如果每个列都为空,索引中同样不存在此记录. 如果至少有一个列不为空,则记录存在于索引中.举例: 如果唯一性索引建立在表的A列和B列上, 并且表中存在一条记录的A,B值为(123,null) , ORACLE将不接受下一条具有相同A,B值(123,null)的记录(插入). 然而如果所有的索引列都为空,ORACLE将认为整个键值为空而空不等于空. 因此你可以插入1000 条具有相同键值的记录,当然它们都是空! 因为空值不存在于索引列中,所以WHERE子句中对索引列进行空值比较将使ORACLE停用该索引.
低效: (索引失效)
SELECT … FROM  DEPARTMENT  WHERE  DEPT_CODE IS NOT NULL;
高效: (索引有效)
SELECT … FROM  DEPARTMENT  WHERE  DEPT_CODE >=0;
(27) 总是使用索引的第一个列
如果索引是建立在多个列上, 只有在它的第一个列(leading column)被where子句引用时,优化器才会选择使用该索引. 这也是一条简单而重要的规则,当仅引用索引的第二个列时,优化器使用了全表扫描而忽略了索引
(28) 用UNION-ALL 替换UNION ( 如果有可能的话)
当SQL语句需要UNION两个查询结果集合时,这两个结果集合会以UNION-ALL的方式被合并, 然后在输出最终结果前进行排序. 如果用UNION ALL替代UNION, 这样排序就不是必要了. 效率就会因此得到提高. 需要注意的是,UNION ALL 将重复输出两个结果集合中相同记录. 因此各位还是要从业务需求分析使用UNION ALL的可行性. UNION 将对结果集合排序,这个操作会使用到SORT_AREA_SIZE这块内存. 对于这块内存的优化也是相当重要的. 下面的SQL可以用来查询排序的消耗量
低效:
SELECT  ACCT_NUM, BALANCE_AMT
FROM  DEBIT_TRANSACTIONS
WHERE TRAN_DATE = '31-DEC-95'
UNION
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = '31-DEC-95'
高效:
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = '31-DEC-95'
UNION ALL
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = '31-DEC-95'
(29) 用WHERE替代ORDER BY
ORDER BY 子句只在两种严格的条件下使用索引.
ORDER BY中所有的列必须包含在相同的索引中并保持在索引中的排列顺序.
ORDER BY中所有的列必须定义为非空.
WHERE子句使用的索引和ORDER BY子句中所使用的索引不能并列.
例如:
表DEPT包含以下列:
DEPT_CODE PK NOT NULL
DEPT_DESC NOT NULL
DEPT_TYPE NULL
低效: (索引不被使用)
SELECT DEPT_CODE FROM  DEPT  ORDER BY  DEPT_TYPE
高效: (使用索引)
SELECT DEPT_CODE  FROM  DEPT  WHERE  DEPT_TYPE > 0
(30) 避免改变索引列的类型.:
当比较不同数据类型的数据时, ORACLE自动对列进行简单的类型转换.
假设 EMPNO是一个数值类型的索引列.
SELECT …  FROM EMP  WHERE  EMPNO = ‘123'
实际上,经过ORACLE类型转换, 语句转化为:
SELECT …  FROM EMP  WHERE  EMPNO = TO_NUMBER(‘123')
幸运的是,类型转换没有发生在索引列上,索引的用途没有被改变.
现在,假设EMP_TYPE是一个字符类型的索引列.
SELECT …  FROM EMP  WHERE EMP_TYPE = 123
这个语句被ORACLE转换为:
SELECT …  FROM EMP  WHERETO_NUMBER(EMP_TYPE)=123
因为内部发生的类型转换, 这个索引将不会被用到! 为了避免ORACLE对你的SQL进行隐式的类型转换, 最好把类型转换用显式表现出来. 注意当字符和数值比较时, ORACLE会优先转换数值类型到字符类型
(31) 需要当心的WHERE子句:
某些SELECT 语句中的WHERE子句不使用索引. 这里有一些例子.
在下面的例子里, (1)‘!=' 将不使用索引. 记住, 索引只能告诉你什么存在于表中, 而不能告诉你什么不存在于表中. (2) ‘||'是字符连接函数. 就象其他函数那样, 停用了索引. (3) ‘+'是数学函数. 就象其他数学函数那样, 停用了索引. (4)相同的索引列不能互相比较,这将会启用全表扫描.
(32) a. 如果检索数据量超过30%的表中记录数.使用索引将没有显著的效率提高.
b. 在特定情况下, 使用索引也许会比全表扫描慢, 但这是同一个数量级上的区别. 而通常情况下,使用索引比全表扫描要块几倍乃至几千倍!
(33) 避免使用耗费资源的操作:
带有DISTINCT,UNION,MINUS,INTERSECT,ORDER BY的SQL语句会启动SQL引擎
执行耗费资源的排序(SORT)功能. DISTINCT需要一次排序操作, 而其他的至少需要执行两次排序. 通常, 带有UNION, MINUS , INTERSECT的SQL语句都可以用其他方式重写. 如果你的数据库的SORT_AREA_SIZE调配得好, 使用UNION , MINUS, INTERSECT也是可以考虑的, 毕竟它们的可读性很强
(34) 优化GROUP BY:
提高GROUP BY 语句的效率, 可以通过将不需要的记录在GROUP BY 之前过滤掉.下面两个查询返回相同结果但第二个明显就快了许多.
低效:
SELECT JOB , AVG(SAL)
FROM EMP
GROUP JOB
HAVING JOB = ‘PRESIDENT'
OR JOB = ‘MANAGER'
高效:
SELECT JOB , AVG(SAL)
FROM EMP
WHERE JOB = ‘PRESIDENT'
OR JOB = ‘MANAGER'
GROUP JOB

分享到:
评论

相关推荐

    NX二次开发-属性操作(创建与编辑)

    目前关于属性操作的创建于编辑主要有新旧两个版本,旧版本主要使用UF_ATTR_assign()函数,新版本主要使用UF_ATTR_set_user_attribute()函数。注意在使用新版本是需要初始化。

    编书 机械制图习题集(属性块图框)出版社.dwg

    编书 机械制图习题集(属性块图框)出版社.dwg

    毕业设计物联网实战项目基于 ESP8266 及 1.3 寸 TFT 实现的华为太空人时钟.zip

    【项目资源】: 物联网项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    【机器人控制】基于MATLAB的不同神经网络控制器性能对比:机器人手臂模型的NNPC、MRC和NARMA-L2控制策略分析(复现论文或解答问题,含详细可运行代码及解释)

    内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。

    《基于YOLOv8的雪场设备识别系统》(包含源码、完整数据集、可视化界面、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip

    资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。

    (源码)基于Python的微信智能聊天机器人.zip

    # 基于Python的微信智能聊天机器人 ## 项目简介 本项目是一个基于Python的微信智能聊天机器人框架,旨在通过ChatGPT的强大对话能力,将微信打造成一个智能助手。该机器人支持私聊和群聊的智能回复、语音识别、图片生成、插件扩展等功能,能够与好友进行多轮对话,并提供丰富的交互体验。项目支持多端部署,包括个人微信、微信公众号和企业微信应用。 ## 项目的主要特性和功能 多端部署支持个人微信、微信公众号和企业微信应用等多种部署方式。 智能对话支持私聊和群聊的智能回复,具备多轮会话上下文记忆功能,支持GPT3、GPT3.5、GPT4等模型。 语音识别可识别语音消息并通过文字或语音回复,支持Azure、Baidu、Google、OpenAI等多种语音模型。 图片生成支持图片生成和图生图功能(如照片修复),可选择DALLE、Stable Diffusion、Replicate等模型。

    Android毕设实战项目基于Android的健身信息管理系统.zip

    【项目资源】: 适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    《基于YOLOv8的医疗废物分类系统》(包含源码、完整数据集、可视化界面、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip

    资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。

    毕业设计物联网实战项目基于腾讯云物联网开发平台的智能台灯,全套腾讯解决方案,可使用微信小程序远程控制.zip

    【项目资源】: 物联网项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    scipy-0.11.0.tar.gz

    该资源为scipy-0.11.0.tar.gz,欢迎下载使用哦!

    【机械故障仿真】PT500PLUS平行轴齿轮箱故障测试台Machine Vibration & Gearbox Simulator(机械振动-齿轮箱模拟器):转子及齿轮传动故障模拟与数据采集系统设计

    内容概要:PT500PLUS平行轴齿轮箱故障测试台是由瓦伦尼安(VALENIAN)Machine Vibration & Gearbox Simulator(机械振动-齿轮箱模拟器)开发的专业机械故障仿真测试设备。该测试台旨在模拟和研究转子、齿轮传动、轴承及电机系统中的多种常见故障,包括但不限于轴不对中、转子不平衡、机械松动、轴承故障、齿轮故障(如点蚀、磨损、断齿等)以及电机故障(如转子不平衡、轴承故障、匝间短路等)。测试台配备有先进的传感器和数据采集系统,能够实时采集并分析振动、噪声、转速、扭矩等参数,提供多通道同步信号采集与频谱分析功能。此外,测试台还配备了10寸触摸屏、PLC智能控制系统和急停按钮,确保操作简便和安全。 适用人群:机械工程专业师生、科研人员以及从事机械故障诊断和维护的技术人员。 使用场景及目标:①用于高校和科研机构的教学和研究,帮助学生和研究人员深入理解机械故障的机理;②为企业提供故障诊断和预防性维护的解决方案,提高设备可靠性和运行效率;③通过模拟真实工况下的故障,进行轴承寿命预测性试验,研究轴承故障机制与轴承载荷、转速、振动、温度之间的关系。 其他说明:测试台结构紧凑,模块化设计,便于移动和维护。它不仅支持多种传感器的安装和数据采集,还提供了丰富的分析软件功能,如FFT频谱分析、轴心轨迹图、小波分析等,支持数据导出和二次开发,适用于各种复杂的研究和应用需求。

    ### 【5G智慧文旅】商业街、水街信息集成方案:5G技术赋能全方位智慧化升级与游客体验优化

    内容概要:本文档详细介绍了XXX5G特色商业街的规划设计方案,旨在通过5G技术与物联网等前沿科技的融合,全方位提升游客体验感和街区运营效率。首先,基础信息系统涵盖综合管理智慧平台、统一结算系统、5G视频智慧安防监控系统等多个子系统,实现多系统协同管理和数据安全保障。其次,特色应用方面,推出5G短信服务、5G智慧机器人、5G无人巡逻车、5G+XR时空走廊、5G+元宇宙体验馆等项目,将尖端科技与深厚文化底蕴巧妙结合,创新文旅体验形式。最后,通过5G高清视频直播与分享、5G+高空文旅等举措,进一步提升水街的影响力和吸引力。 适用人群:本方案适用于文旅项目规划者、商业街运营管理者、信息技术从业者以及对智慧城市建设感兴趣的各界人士。 使用场景及目标:①为商业街提供全面的智慧化升级方案,涵盖基础信息系统和特色应用两大部分;②通过5G技术赋能,实现高效运营管理和沉浸式游客体验;③推动文旅产业创新发展,促进地方经济繁荣和社会进步。 其他说明:该方案不仅关注技术实现,更重视用户体验和服务质量,强调文化传承与科技创新的有机结合,致力于打造具有国际影响力的智慧文旅新地标。

    【更新至2023年】2000-2023年中国气候政策不确定性指数(全国、省、市三个层面)

    【更新至2023年】2000-2023年中国气候政策不确定性指数数据(全国、省、市三个层面) 1.时间:2000-2023年 2.来源:使用人工审计和深度学习算法MacBERT模型,基于中国《人民日报》《光明日报》《经济日报》《环球时报》《科技日报》《中国新闻社》等6家主流报纸中的1,755,826篇文章,构建了2000年1月至2023年12月的中国全国、省份和主要城市层面的CCPU指数。研究框架包括六个部分:数据收集、清洗数据、人工审计、模型构建、指数计算与标准化以及技术验证。 3.范围:中国、省、市三个层次 4.参考文献:Ma, Y. R., Liu, Z., Ma, D., Zhai, P., Guo, K., Zhang, D., & Ji, Q. (2023). A news-based climate policy uncertainty index for China. Scientific Data, 10(1), 881. 5.时间跨度:全国层面:日度、月度、年度;省级层面:月度、年度;地级市层面:月度、年度

    毕设单片机实战项目基于STM32F401和ESP8266的硬件开源物连网平台.zip

    【项目资源】: 单片机项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    机械工程BTS200轴承寿命预测测试台Bearing Prognostics Simulator:多功能加载与润滑系统设计及应用反映了文档的核心内容

    内容概要:BTS200轴承寿命预测测试台是一款专为研究轴承寿命预测及加速磨损过程设计的实验设备。该设备结构灵活,支持不同尺寸和类型的轴承测试,最大负载可达15000N。测试台采用先进的伺服电缸加载系统,能够在轴向和径向上精确施加载荷,并配备高精度测力传感器和温度监测系统,确保实验数据的准确性。此外,BTS200还拥有油液循环润滑系统,通过油膜减少摩擦和磨损,保持机械部件在适宜的工作温度范围内,延长轴承寿命。Bearing Prognostics Simulator(实验台可通过触控屏操作,支持多速运行(0-3000RPM),并具备过热保护机制,在温度超过150℃时自动停机。BTS200广泛应用于轴承寿命预测、故障机制研究以及剩余寿命预测模型的开发。 适合人群:轴承设计研发人员、机械工程研究人员、高校实验室师生及相关领域工程师。 使用场景及目标:①研究轴承在不同载荷和转速条件下的磨损特性;②开发和验证轴承剩余寿命预测模型;③探索轴承故障机制及其对系统性能的影响;④评估不同润滑方式对轴承寿命的影响。 其他说明:BTS200测试台不仅提供硬件支持,还配备了完整的软件控制系统,包括PLC闭环控制、温度监测反馈模块等,确保实验过程的稳定性和数据的可靠性。此外,设备支持快速安装和拆卸测试轴承,便于实验操作。

    AXI Memory Mapped to PCI Express (PCIe) Gen2 v2.9

    xilinx基于PCIE IP的PCIE Bridge IP操作手册

    毕设单片机实战项目基于 STM32F407+ESP8266+RFID 的模拟公交车刷卡收费系统(物联网版).zip

    【项目资源】: 单片机项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    使用教程 (1).mov

    使用教程 (1).mov

    (源码)基于webpack和Vue的前端项目构建方案.zip

    # 基于webpack和Vue的前端项目构建方案 ## 项目简介 本项目是基于webpack和Vue构建的前端项目方案,借助webpack强大的打包能力以及Vue的开发特性,可用于快速搭建现代化的前端应用。项目不仅完成了基本的webpack与Vue的集成配置,还在构建速度优化和代码规范性方面做了诸多配置。 ## 项目的主要特性和功能 1. 打包功能运用webpack进行模块打包,支持将scss转换为css,借助babel实现语法转换。 2. Vue开发支持集成Vue框架,能使用Vue单文件组件的开发模式。 3. 构建优化采用threadloader实现多进程打包,cacheloader缓存资源,极大提高构建速度开启热更新功能,开发更高效。 4. 错误处理与优化提供不同环境下的错误映射配置,便于定位错误利用webpackbundleanalyzer分析打包体积。

    30位最伟大的板球运动员图像集合数据集

    数据说明: 板球是世界上观看人数第二多的运动。这项运动充满了大量的情绪和戏剧性,直到比赛的最后一球。而且,有板球运动员一次又一次地证明,他们是这项运动的真正大师,改变了输掉比赛到赢得比赛的方程式,并在比赛中用他们的魔法咒语为他们的国家带来了许多胜利。作为板球迷,是时候利用深度学习技能,通过这个数据集获得更多乐趣,并检测/预测有史以来最伟大的板球运动员了。 数据准备: 2019年,BBC邀请观众投票选出“有史以来最伟大的板球运动员”,最终根据收到的最高票数发布了有史以来最伟大的30名板球运动员名单。这个数据集从中提取了30名板球运动员的相关图像6950张

Global site tag (gtag.js) - Google Analytics