`
jackchen0227
  • 浏览: 146742 次
  • 性别: Icon_minigender_1
  • 来自: 帝都
社区版块
存档分类
最新评论
阅读更多

Bloom Filter概念和原理

焦萌 2007 1 27

 

Bloom Filter 是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。 Bloom Filter 的这种高效是有一定代价的:在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合( false positive )。因此, Bloom Filter 不适合那些“零错误”的应用场合。而在能容忍低错误率的应用场合下, Bloom Filter 通过极少的错误换取了存储空间的极大节省。

集合表示和元素查询

下面我们具体来看 Bloom Filter 是如何用位数组表示集合的。初始状态时, Bloom Filter 是一个包含 m 位的位数组,每一位都置为 0

 

为了表达 S={x1 , x2 ,…,xn } 这样一个 n 个元素的集合, Bloom Filter 使用 k 个相互独立的哈希函数( Hash Function ),它们分别将集合中的每个元素映射到 {1,…,m} 的范围中。对任意一个元素 x ,第 i 个哈希函数映射的位置 hi (x) 就会被置为 1 1 i k )。注意,如果一个位置多次被置为 1 ,那么只有第一次会起作用,后面几次将没有任何效果。在下图中, k=3 ,且有两个哈希函数选中同一个位置(从左边数第五位)。    

 

 

在判断 y 是否属于这个集合时,我们对 y 应用 k 次哈希函数,如果所有 hi (y) 的位置都是 1 1 i k ),那么我们就认为 y 是集合中的元素,否则就认为 y 不是集合中的元素。下图中 y1 就不是集合中的元素。 y2 或者属于这个集合,或者刚好是一个 false positive

 

错误率估计

前面我们已经提到了, Bloom Filter 在判断一个元素是否属于它表示的集合时会有一定的错误率( false positive rate ),下面我们就来估计错误率的大小。在估计之前为了简化模型,我们假设 kn<m 且各个哈希函数是完全随机的。当集合 S={x1 , x2 ,…,xn } 的所有元素都被 k 个哈希函数映射到 m 位的位数组中时,这个位数组中某一位还是 0 的概率是:

 

其中 1/m 表示任意一个哈希函数选中这一位的概率(前提是哈希函数是完全随机的), (1-1/m) 表示哈希一次没有选中这一位的概率。要把 S 完全映射到位数组中,需要做 kn 次哈希。某一位还是 0 意味着 kn 次哈希都没有选中它,因此这个概率就是( 1-1/m )的 kn 次方。令 p = e-kn/m 是为了简化运算,这里用到了计算e时常用的近似:

 

ρ为 位数组中 0 的比例,则 ρ的数学期望E( ρ)= p’ 。在 ρ已知的情况下,要求的错误率( false positive rate )为:

 

(1- ρ) 位数组中 1 的比例, (1- ρ)k 就表示 k 次哈希都刚好选中 1 的区域,即 false positive rate 。上式中第二步近似在前面已经提到了,现在来看第一步近似。 p’ 只是 ρ的数学期望,在实际中ρ的值有可能偏离它的数学期望值。 M. Mitzenmacher 已经证明 [2] ,位数组中0 的比例非常集中地分布在它的数学期望值的附近。因此, 第一步的近似得以成立。分别将 p p’ 代入上式中,得:

   

   

 

 

相比 p’ f’ ,使用 p f 通常在分析中更为方便。

最优的哈希函数个数

既然 Bloom Filter 要靠多个哈希函数将集合映射到位数组中,那么应该选择几个哈希函数才能使元素查询时的错误率降到最低呢?这里有两个互斥的理由:如果哈希函数的个数多,那么在对一个不属于集合的元素进行查询时得到 0 的概率就大;但另一方面,如果哈希函数的个数少,那么位数组中的 0 就多。为了得到最优的哈希函数个数,我们需要根据上一小节中的错误率公式进行计算。

 

先用 p f 进行计算。注意到 f = exp(k ln(1 − e−kn/m )) ,我们令 g = k ln(1 − e−kn/m ) ,只要让 g 取到最小, f 自然也取到最小。由于 p = e-kn/m ,我们可以将 g 写成

 

根据对称性法则可以很容易看出当 p = 1/2 ,也就是 k = ln2· (m/n) 时, g 取得最小值。在这种情况下,最小错误率 f 等于 (1/2)k (0.6185)m/n 。另外,注意到p是位数组中某一位仍是0的概率,所以p = 1/2 对应着位数组中0和1各一半。换句话说,要想保持错误率低,最好让位数组有一半还空着。

 

需要强调的一点是, p = 1/2 时错误率最小这个结果并不依赖于近似值 p f 。同样对于 f’ = exp(k ln(1 − (1 − 1/m)kn )) g’ = k ln(1 − (1 − 1/m)kn ) p’ = (1 − 1/m)kn ,我们可以将 g’ 写成

 

同样根据对称性法则可以得到当 p’ = 1/2 时, g’ 取得最小值。

位数组的大小

下面我们来看看,在不超过一定错误率的情况下, Bloom Filter 至少需要多少位才能表示全集中任意 n 个元素的集合。假设全集中共有 u 个元素,允许的最大错误率为 є ,下面我们来求位数组的位数 m

 

假设 X 为全集中任取 n 个元素的集合, F(X) 是表示 X 的位数组。那么对于集合 X 中任意一个元素 x ,在 s = F(X) 中查询 x 都能得到肯定的结果,即 s 能够接受 x 。显然,由于 Bloom Filter 引入了错误, s 能够接受的不仅仅是 X 中的元素,它还能够 є (u - n) false positive 。因此,对于一个确定的位数组来说,它能够接受总共 n + є (u - n) 个元素。在 n + є (u - n) 个元素中, s 真正表示的只有其中 n 个,所以一个确定的位数组可以表示

 

个集合。 m 位的位数组共有 2m 个不同的组合,进而可以推出, m 位的位数组可以表示

   

 

个集合。全集中 n 个元素的集合总共有

   

 

个,因此要让 m 位的位数组能够表示所有 n 个元素的集合,必须有

   

 

即:

   

 

上式中的近似前提是 n єu 相比很小,这也是实际情况中常常发生的。根据上式,我们得出结论:在错误率不大于 є 的情况下, m 至少要等于 n log2 (1/є) 才能表示任意 n 个元素的集合。

 

上一小节中我们曾算出当 k = ln2· (m/n) 时错误率 f 最小,这时 f = (1/2)k = (1/2)mln2 / n 。现在令 f є ,可以推出

 

这个结果比前面我们算得的下界 n log2 (1/є) 大了 log2 e 1.44 倍。这说明在哈希函数的个数取到最优时,要让错误率不超过 є m 至少需要取到最小值的 1.44 倍。

总结

在计算机科学中,我们常常会碰到时间换空间或者空间换时间的情况,即为了达到某一个方面的最优而牺牲另一个方面。 Bloom Filter 在时间空间这两个因素之外又引入了另一个因素:错误率。在使用 Bloom Filter 判断一个元素是否属于某个集合时,会有一定的错误率。也就是说,有可能把不属于这个集合的元素误认为属于这个集合( False Positive ),但不会把属于这个集合的元素误认为不属于这个集合( False Negative )。在增加了错误率这个因素之后, Bloom Filter 通过允许少量的错误来节省大量的存储空间。

 

自从 Burton Bloom 70 年代提出 Bloom Filter 之后, Bloom Filter 就被广泛用于拼写检查和数据库系统中。近一二十年,伴随着网络的普及和发展, Bloom Filter 在网络领域获得了新生,各种 Bloom Filter 变种和新的应用不断出现。可以预见,随着网络应用的不断深入,新的变种和应用将会继续出现, Bloom Filter 必将获得更大的发展。

参考资料

[1] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A survey . Internet Mathematics, 1(4):485–509, 2005.

[2] M. Mitzenmacher. Compressed Bloom Filters . IEEE/ACM Transactions on Networking 10:5 (2002), 604—612.

[3] www.cs.jhu.edu/~fabian/courses/CS600.624/slides/bloomslides.pdf

[4] http://166.111.248.20/seminar/2006_11_23/hash_2_yaxuan.ppt

分享到:
评论

相关推荐

    Bloom Filter概念和原理

    ### Bloom Filter概念与原理 #### 一、Bloom Filter概述 Bloom Filter是一种高效的数据结构,主要用于快速查询一个元素是否存在于一个集合中。它通过牺牲一定的精确度来换取存储空间的极大节省。Bloom Filter的...

    leveldb中bloomfilter的优化.pdf

    ### Leveldb中Bloom Filter的优化:ElasticBF #### 概述 在现代数据库技术中,**Log-Structured Merge-tree (LSM-tree)** 结构因其高效的写入性能而被广泛应用于各种键值(Key-Value, KV)存储系统中,如Google的*...

    带bloom filter 的c网络爬虫

    - **bloomfilter.h**:这是一个头文件,很可能包含了Bloom Filter的数据结构定义和相关操作函数的声明。在C语言中,头文件通常用于提供接口给其他源文件使用,这里可能是为了在spider.c中方便地调用Bloom Filter的...

    bloomfilter.js, 使用FNV的JavaScript bloom filter快速散列.zip

    bloomfilter.js, 使用FNV的JavaScript bloom filter快速散列 Bloom过滤器This过滤器实现使用非加密 Fowler-Noll-Vo散列函数来实现速度。用法var bloom = new BloomFilter( 32 * 256,//number of bits to all

    bloom filter

    ### Bloom Filter概述与应用 #### 一、Bloom Filter简介 Bloom Filter是一种高效的数据结构,主要用于近似地判断一个元素是否在一个集合中。它的主要特点是空间效率高,但允许存在一定的误报率(即可能会错误地...

    Python-bloomfilter过滤器

    **Python-bloomfilter过滤器详解** Bloom Filter是一种空间效率极高的概率型数据结构,用于判断一个元素是否在一个集合中。在Python开发中,尤其是在处理大量数据时,Bloom Filter可以有效地节省内存空间,尤其适用...

    java-bloomfilter

    BloomFilter&lt;String&gt; bloomFilter = BloomFilter.create(Funnels.stringFunnel(Charsets.UTF_8), 100000, 0.0001); // 添加元素 bloomFilter.put("element1"); bloomFilter.put("element2"); // 检查元素 ...

    多字段矩阵型bloomfilter(支持砍维度)

    在传统的Bloom Filter中,它通常处理单一的关键字,而在“多字段矩阵型Bloom Filter”中,这一概念被扩展到了支持多个字段的情况,这使得它在处理复杂数据集时更具灵活性。 首先,我们要理解Bloom Filter的基本原理...

    BloomFilter及其应用综述

    Bloom filter是一个简明的空间效率极高的随机的数据结构。用Bloom filter 表示 cache 内容 ,可以高效地实现cache 协作。本文对BloomFilter及其改进型进行了综述性分析,探讨了它的实用性。

    Java版本的BloomFilter (布隆过滤器)

    BloomFilter&lt;String&gt; bloomFilter = BloomFilter.create(funnel, 100000, 0.03); bloomFilter.put("element1"); bloomFilter.put("element2"); System.out.println(bloomFilter.mightContain("element1")); //...

    Bloom Filter of 2.5 Million common passwords

    This is the bloom filter of 2.5 Million ... BloomFilter bf=new BloomFilter(); BitSet bitSet=bf.readBit(fileName); bf.setBits(bitSet); System.out.println(bf.exist("password")); } it will says true.

    BloomFilter算法

    **Bloom Filter算法详解** Bloom Filter是一种空间效率极高的概率型数据结构,用于判断一个元素是否可能在一个集合中。由Burton Howard Bloom在1970年提出,它的主要特点是能够在牺牲一定的判断准确性(可能存在...

    Go-Go中的CuckooFilter实现比BloomFilter更好

    在Go编程语言中,Bloom Filter和Cuckoo Filter是两种流行的数据结构,用于空间效率高的近似存在检查。本篇文章将深入探讨Cuckoo Filter如何在某些情况下优于Bloom Filter,以及Go语言中实现Cuckoo Filter的细节。 ...

    bloom-filter-scala, 用于 Scala的Bloom过滤器,最快的JVM.zip

    bloom-filter-scala, 用于 Scala的Bloom过滤器,最快的JVM Scala的 Bloom filter 概述Bloom过滤器是一种空间高效的数据结构,用于测试某个元素是否是集合的成员。 false 正匹配是可能的,但 false 负数不是。 ...

    bloom filter 相关论文资料

    布隆过滤器(Bloom Filter)是一种空间效率极高的概率数据结构,用于判断一个元素是否可能在一个集合中。它由布伦南·布隆在1970年提出,最初是为了解决查找问题中的空间效率问题。这篇论文资料集合涵盖了布隆过滤器...

    Bloom Filter 在数据库系统的应用

    Bloom Filter 在数据库系统的应用 Bloom Filter 是一种基于哈希、概率性的数据结构,用于空间高效的集合表示。它可以快速判断一个元素是否在集合中,但可能存在假阳性(False Positive),却从不出现假阴性(False...

    基于Bloom Filter的海量数据分布式快速匹配算法研究.pdf

    2. Bloom Filter技术:Bloom Filter是一种空间效率很高的随机数据结构,它使用位数组来简洁地表示一个集合,并且能够快速判断一个元素是否属于这个集合。Bloom Filter的引入是为了高效利用数据空间,在海量数据匹配...

Global site tag (gtag.js) - Google Analytics