-
Generally speaking, data in an OLTP database is generally
organized into relational tables to reduce
redundant information and to increase
the speed of updates. SQL Server enables a large number of users to
perform transactions and simultaneously change real-time data in OLTP
databases. Examples of OLTP databases include airline ticketing and banking
transaction systems.
-
OLAP technology organizes and summarizes large
amounts of data so that an analyst
can evaluate data quickly and in
real time. SQL Server 2000 Analysis Services organizes this data to
support a wide array of enterprise solutions, from corporate reporting and
analysis to data modeling and decision support.
- The following table summarizes the major differences between
OLTP and OLAP system design.
|
OLTP System
Online Transaction Processing
(Operational System)
|
OLAP System
Online Analytical Processing
(Data Warehouse)
|
Source
of data
|
Operational
data; OLTPs are the original source of the data.
|
Consolidation
data; OLAP data comes from the various OLTP Databases
|
Normalization
|
fully
normalized
|
Possibly
partially denormalized for performance reasons
|
Organization
|
Data
stored revolves around business functions
|
Data
stored revolves around information topics.
|
Purpose
of data
|
To
control and run fundamental business tasks
|
To help
with planning, problem solving, and decision support
|
What
the data
|
Reveals
a snapshot of ongoing business processes
|
Multi-dimensional
views of various kinds of business activities
|
Inserts
and Updates
|
Short
and fast inserts and updates initiated by end users
|
Periodic
long-running batch jobs refresh the data
|
Queries
|
Relatively
standardized and simple queries Returning relatively few records
|
Often
complex queries involving aggregations
|
Processing
Speed
|
Typically
very fast
|
Depends
on the amount of data involved; batch data refreshes and complex queries may
take many hours; query speed can be improved by creating indexes
|
Space
Requirements
|
Can be
relatively small if historical data is archived
|
Larger
due to the existence of aggregation structures and history data; requires
more indexes than OLTP
|
Database
Design
|
Highly
normalized with many tables
|
Typically
de-normalized with fewer tables; use of star and/or snowflake schemas
|
Backup
and Recovery
|
Backup
religiously; operational data is critical to run the business, data loss is
likely to entail significant monetary loss and legal liability
|
Instead
of regular backups, some environments may consider simply reloading the OLTP
data as a recovery method
|
Index
|
Optimizes
update performance by minimizing the number of indexes
|
Optimizes
adhoc queries by including lots of indexes
|
Furthermore,
Data Warehouse and OLAP
Although sometimes used interchangeably, the
terms data
warehousing and online
analytical processing (OLAP) apply to different components of
systems often referred to as decision support systems or business intelligence
systems. Components of these types of systems include databases and
applications that provide the tools analysts need to support organizational
decision-making.
A data warehouse is a database containing data
that usually represents the business
history of an organization. This historical data is used for analysis that
supports business decisions at many levels, from strategic planning to
performance evaluation of a discrete organizational unit. Data in a data
warehouse is organized to support
analysis rather than to process real-time transactions as in online
transaction processing systems (OLTP).
OLAP technology enables data warehouses to be used
effectively for online analysis, providing rapid responses to iterative complex
analytical queries. OLAP's multidimensional
data model and data aggregation
techniques organize and summarize large amounts of data so it can be
evaluated quickly using online analysis
and graphical tools. The answer to a query into historical data often leads
to subsequent queries as the analyst searches for answers or explores
possibilities. OLAP systems provide the speed and flexibility to support the
analyst in real time.
- 大小: 3.8 KB
分享到:
相关推荐
基于Oracle的OLTP与OLAP数据库内存设计和优化.pdf
随着企业业务的扩展,对于数据处理的需求也愈加复杂,OLTP(在线事务处理)和OLAP(在线分析处理)这两种数据库架构变得尤为重要。OLTP系统侧重于日常的事务处理,如增加、删除、修改等,强调处理速度、数据一致性及...
本文主要介绍了腾讯广告在OLTP(在线事务处理)和OLAP(在线分析处理)方面的实践,涉及到的技术栈包括Spark Streaming、HBase、Phoenix、Hermes等,并讨论了如何优化数据处理流程以提升效率和数据一致性。...
【OLTP与OLAP技术融合架构实践】 在线事务处理(OLTP)和在线分析处理(OLAP)是两种不同但互补的数据处理模式。OLTP主要关注于日常事务处理,如银行交易、电子商务订单等,强调高并发、低延迟和数据的一致性。而...
数据处理领域中的OLTP(在线事务处理)与OLAP(在线分析处理)是两种关键的系统类型,分别针对不同的业务需求。OLTP是传统的关系型数据库的主要应用,主要用于日常的事务处理,例如银行交易,强调高并发、快速响应...
《OLTP与OLAP:两种数据处理方式的深度解析》 在信息技术领域,OLTP(联机事务处理)和OLAP(联机分析处理)是两种核心的数据处理方式,它们各自服务于不同类型的业务需求,拥有截然不同的特性和应用场景。本文旨在...
基于Oracle的OLTP与OLAP数据库设计及实现 基于Oracle的OLTP与OLAP数据库设计及实现是关系型数据库管理系统中的重要组成部分。 在本文中,我们将介绍OLTP和OLAP数据库设计及实现的概念,并讨论基于Oracle的OLTP和...
### OLTP与OLAP的区别精简总结 #### 当今数据处理分类 当今的数据处理领域大致可以分为两大类:联机事务处理(Online Transaction Processing,简称OLTP)与联机分析处理(Online Analytical Processing,简称OLAP...
OLTP(在线事务处理)与OLAP(在线分析处理)是数据库领域的两项核心技术,它们分别服务于不同的业务需求场景。OLTP是面向交易的处理过程,强调的是快速响应用户操作,其特点包括数据量少、面向应用、并行事务处理、...
### OLTP与OLAP的区别详解 #### 一、引言 在现代信息技术领域,随着数据量的爆炸性增长以及业务需求的多样化发展,如何高效、准确地管理和利用这些数据成为了企业和组织关注的重点。在此背景下,两种重要的数据...
### OLTP与OLAP系统数据库建模思考与实践 #### 一、引言 随着信息技术的发展,企业对数据处理的需求日益增长。为了更好地满足不同场景下的数据处理需求,出现了两种主流的数据处理方式:联机事务处理(Online ...
在数据库领域,OLTP(在线事务处理)和OLAP(在线分析处理)是两种关键的技术类型,它们分别服务于不同的业务需求。OLTP主要用于处理日常的事务性操作,如银行交易、零售销售等实时数据录入和查询,而OLAP则专注于...
首先,OLAP(在线分析处理)的出现是为了弥补传统OLTP(在线事务处理)系统的不足。OLTP主要服务于日常事务操作,例如银行交易或电子商务订单,它处理的是细节性的、实时的数据,而OLAP则专注于数据分析和决策支持,...
OLAP的出现源于20世纪60年代关系数据库的兴起,以及后来E.F.Codd在1993年提出的理论,指出传统的联机事务处理(OLTP)系统无法满足用户对数据库进行深度分析的需求。OLTP主要处理日常事务,而OLAP则专注于对历史数据...
其中,Bats作为一个面向OLTP(在线事务处理)、OLAP(在线分析处理)、批处理和流处理场景的大一统SQL引擎,为数据处理提供了高效且灵活的解决方案。本文将深入探讨Bats的关键特性、应用场景及其技术优势。 首先,...
【OLTP与OLAP业务系统的Oracle优化思路】 Oracle数据库在OLTP(联机事务处理)和OLAP(联机分析处理)系统中的优化策略各有侧重,主要体现在对系统特性的理解和针对不同业务需求的调整。 1. **数据库业务类型分类*...
OLTP与OLAP数据处理大致可以分成两大类:联机事务处理OLTP(on-line transaction processing)联机分析处理OLAP(On-L
3.1.1 Oracle RAC and ASM Oracle RAC是一种集群数据库技术,允许多个实例共享同一个物理数据库,提高服务的可用性和可扩展性。ASM是Oracle的自动存储管理工具,负责磁盘管理和数据存储,简化了存储管理,提升了...