0. 什么是物化视图
物化视图是查询结果的预运算。不同于简单的视图,物化视图的结果一般存储于表中。物化视图用于需要对查询立即做出响应,而又需要耗费很长时间获得结果。物化视图必须能快速更新。它取决于对更新频率和内容的准确性的要求。一般说来物化视图能够在一定时间内及时更新。
Mysql本来是不支持视图的,但是在5.0以上的版本,支持了视图功能,但是可惜的是不提供物化视图,但是这也难不住咱们,自己动手丰衣足食。
1. 实现自己的物化视图
看一个它是如何实现的简单的查询实例:
SELECT COUNT(*)
FROM MyISAM_table;由于计数值存储在表的头部 立即返回结果。接下来的例子会耗费几秒到数分钟。
SELECT COUNT(*) FROM innodb_huge;
对此的可能解决方案是创建一个存储所有 InnoDB 行的表。
CREATE TABLE innodb_row_count (
id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY
, schema_name VARCHAR(64) NOT NULL
, table_name VARCHAR(64) NOT NULL
, row_count INT UNSIGNED NOT NULL
);取决于对该信息结果正确性的需要,该表可以每天更新一次(花费系统资源最少,结果错误最大),一小时一次甚至是极端情况下每次改变都更新(最慢)。
另一种可能就是从信息架构中读取数据。但是信息会有高达20%的错误。
SELECT table_schema, table_name, table_rows
FROM information_schema.tables WHERE table_type = ‘BASE TABLE’;
2. 更新物化视图
物化视图的更新方式有很多种。比如:
l 从不更新(只在开始更新,只用于静态数据)
l 根据需要(比如每天,比如每夜)
l 及时(每次数据修改之后)
一半使用的更新方法:
l 全部更新(速度慢,完全从无到有)
l 延时的(速度快,使用log表)
通过在日志表中存储变更信息,通常会产生简单的“快照”或者延时状况:
l 及时更新
l 完全更新
3. 测试
为了理解这个方法,我们举个例子,详细讲解一下。
CREATE TABLE sales (
sales_id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY
, product_name VARCHAR(128) NOT NULL
, product_price DECIMAL(8,2) NOT NULL
, product_amount SMALLINT NOT NULL
);
INSERT INTO sales VALUES
(NULL, 'Apple', 1.25, 1), (NULL, 'Apple', 2.40, 2),
(NULL, 'Apple', 4.05, 3), (NULL, 'Pear', 6.30, 2),
(NULL, 'Pear', 12.20, 4), (NULL, 'Plum', 4.85, 3);
SELECT * FROM sales;我们要知道售价和每种产品获得的利润,就要使用到两次的分组查询,我们晓得在mysql中连接查询和分组排序是会用到临时表和filesort的,这个如果数据量大的话,是十分耗时,如题查询如下:
EXPLAIN
SELECT product_name
, SUM(product_price) AS price_sum, SUM(product_amount) AS amount_sum
, AVG(product_price) AS price_avg, AVG(product_amount) amount_agg
, COUNT(*)
FROM sales
GROUP BY product_name
ORDER BY price_sum \G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: sales
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 6
Extra: Using temporary; Using filesort
1 row in set (0.00 sec)因为表中记录较少,因此速度很快,但是如果记录量很大这种,查询将会花费很多时间。
3.1 创建物化视图
DROP TABLE sales_mv;
CREATE TABLE sales_mv (
product_name VARCHAR(128) NOT NULL ,
price_sum DECIMAL(10,2) NOT NULL,
amount_sum INT NOT NULL,
price_avg FLOAT NOT NULL,
amount_avg FLOAT NOT NULL,
sales_cnt INT NOT NULL,
UNIQUE INDEX product (product_name)
);
INSERT INTO sales_mv
SELECT product_name, SUM(product_price), SUM(product_amount), AVG(product_price), AVG(product_amount), COUNT(*)
FROM sales
GROUP BY product_name;最简单的方法,我们得到了预期的正确结果:
mysql> SELECT * FROM sales_mv \G
*************************** 1. row ***************************
product_name: Apple
price_sum: 7.70
amount_sum: 6
price_avg: 2.56667
amount_avg: 2
sales_cnt: 3
*************************** 2. row ***************************
product_name: Pear
price_sum: 18.50
amount_sum: 6
price_avg: 9.25
amount_avg: 3
sales_cnt: 2
*************************** 3. row ***************************
product_name: Plum
price_sum: 4.85
amount_sum: 3
price_avg: 4.85
amount_avg: 3
sales_cnt: 1
3 rows in set (0.01 sec)这会导致我们刚才提到的“从不更新”模式失败。但是这不是我们想要的。
3.2 按需更新物化视图
根据需要更新物化视图,我们可以用存储过程来实现
DROP PROCEDURE refresh_mv_now;
DELIMITER $$
CREATE PROCEDURE refresh_mv_now (
OUT rc INT
)
BEGIN
TRUNCATE TABLE sales_mv;
INSERT INTO sales_mv
SELECT product_name
, SUM(product_price), SUM(product_amount), AVG(product_price), AVG(product_amount)
, COUNT(*)
FROM sales
GROUP BY product_name;
SET rc = 0;
END;
$$
DELIMITER ;
好!我们看下他的运行结果:
CALL refresh_mv_now(@rc);
SELECT * FROM sales_mv \G
*************************** 1. row ***************************
product_name: Apple
price_sum: 7.70
amount_sum: 6
price_avg: 2.56667
amount_avg: 2
sales_cnt: 3
*************************** 2. row ***************************
product_name: Pear
price_sum: 18.50
amount_sum: 6
price_avg: 9.25
amount_avg: 3
sales_cnt: 2
*************************** 3. row ***************************
product_name: Plum
price_sum: 4.85
amount_sum: 3
price_avg: 4.85
amount_avg: 3
sales_cnt: 1
3 rows in set (0.00 sec)
INSERT INTO sales VALUES
(NULL, ‘Apple’, 2.25, 3), (NULL, ‘Plum’, 3.35, 1)
, (NULL, ‘Pear’, 1.80, 2);
CALL refresh_mv_now(@rc);
SELECT * FROM sales_mv \G
*************************** 1. row ***************************
product_name: Apple
price_sum: 7.70
amount_sum: 6
price_avg: 2.56667
amount_avg: 2
sales_cnt: 3
*************************** 2. row ***************************
product_name: Pear
price_sum: 18.50
amount_sum: 6
price_avg: 9.25
amount_avg: 3
sales_cnt: 2
*************************** 3. row ***************************
product_name: Plum
price_sum: 4.85
amount_sum: 3
price_avg: 4.85
amount_avg: 3
sales_cnt: 1
3 rows in set (0.00 sec)
3.3 即时更新物化视图
每条语句之后做全部更新没有任何意义。但是我们想要合适的结果。做到这一点还是有点复杂的。
在每次insert sales 表我们都要更新物化视图。我们可以在sales表中透明的使用insert/update/delete触发器实现。
现在来创建需要的触发器:
DELIMITER $$
CREATE TRIGGER sales_ins
AFTER INSERT ON sales
FOR EACH ROW
BEGIN
SET @old_price_sum = 0;
SET @old_amount_sum = 0;
SET @old_price_avg = 0;
SET @old_amount_avg = 0;
SET @old_sales_cnt = 0;
SELECT IFNULL(price_sum, 0), IFNULL(amount_sum, 0), IFNULL(price_avg, 0), IFNULL(amount_avg, 0)
, IFNULL(sales_cnt, 0)
FROM sales_mv
WHERE product_name = NEW.product_name
INTO @old_price_sum, @old_amount_sum, @old_price_avg, @old_amount_avg, @old_sales_cnt;
SET @new_price_sum = @old_price_sum + NEW.product_price;
SET @new_amount_sum = @old_amount_sum + NEW.product_amount;
SET @new_sales_cnt = @old_sales_cnt + 1;
SET @new_price_avg = @new_price_sum / @new_sales_cnt;
SET @new_amount_avg = @new_amount_sum / @new_sales_cnt;
REPLACE INTO sales_mv
VALUES(NEW.product_name, @new_price_sum, @new_amount_sum, @new_price_avg, @new_amount_avg, @new_sales_cnt)
;
END;
$$
DELIMITER ;
DELIMITER $$
CREATE TRIGGER sales_del
AFTER DELETE ON sales
FOR EACH ROW
BEGIN
SET @old_price_sum = 0;
SET @old_amount_sum = 0;
SET @old_price_avg = 0;
SET @old_amount_avg = 0;
SET @old_sales_cnt = 0;
SELECT IFNULL(price_sum, 0), IFNULL(amount_sum, 0), IFNULL(price_avg, 0), IFNULL(amount_avg, 0)
, IFNULL(sales_cnt, 0)
FROM sales_mv
WHERE product_name = OLD.product_name
INTO @old_price_sum, @old_amount_sum, @old_price_avg, @old_amount_avg, @old_sales_cnt
;
SET @new_price_sum = @old_price_sum - OLD.product_price;
SET @new_amount_sum = @old_amount_sum - OLD.product_amount;
SET @new_price_avg = @new_price_sum / @new_amount_sum;
SET @new_sales_cnt = @old_sales_cnt - 1;
SET @new_amount_avg = @new_amount_sum / @new_sales_cnt;
REPLACE INTO sales_mv
VALUES(OLD.product_name, @new_price_sum, @new_amount_sum, IFNULL(@new_price_avg, 0)
, IFNULL(@new_amount_avg, 0), @new_sales_cnt)
;
END;
$$
DELIMITER ;
DELIMITER $$
CREATE TRIGGER sales_upd
AFTER UPDATE ON sales
FOR EACH ROW
BEGIN
SET @old_price_sum = 0;
SET @old_amount_sum = 0;
SET @old_price_avg = 0;
SET @old_amount_avg = 0;
SET @old_sales_cnt = 0;
SELECT IFNULL(price_sum, 0), IFNULL(amount_sum, 0), IFNULL(price_avg, 0), IFNULL(amount_avg, 0)
, IFNULL(sales_cnt, 0)
FROM sales_mv
WHERE product_name = OLD.product_name
INTO @old_price_sum, @old_amount_sum, @old_price_avg, @old_amount_avg, @old_sales_cnt
;
SET @new_price_sum = @old_price_sum + (NEW.product_price - OLD.product_price);
SET @new_amount_sum = @old_amount_sum + (NEW.product_amount - OLD.product_amount);
SET @new_sales_cnt = @old_sales_cnt;
SET @new_price_avg = @new_price_sum / @new_sales_count;
SET @new_amount_avg = @new_amount_sum / @new_sales_cnt;
REPLACE INTO sales_mv
VALUES(OLD.product_name, @new_price_sum, @new_amount_sum, IFNULL(@new_price_avg, 0)
, IFNULL(@new_amount_avg, 0), @new_sales_cnt)
;
END;
$$
DELIMITER ;现在来看结果:
INSERT INTO sales VALUES (NULL, 'Apple', 1.25, 1);
INSERT INTO sales VALUES (NULL, 'Apple', 2.40, 2);
INSERT INTO sales VALUES (NULL, 'Apple', 4.05, 3);
INSERT INTO sales VALUES (NULL, 'Pear', 6.30, 2);
INSERT INTO sales VALUES (NULL, 'Pear', 12.20, 4);
INSERT INTO sales VALUES (NULL, 'Plum', 4.85, 3);
DELETE FROM sales WHERE sales_id = 5;
DELETE FROM sales WHERE sales_id = 4;
UPDATE sales SET product_amount = 3 where sales_id = 2;
SELECT * from sales_v;来看一下结果:
INSERT INTO sales VALUES (NULL, 'Apple', 1.25, 1);
INSERT INTO sales VALUES (NULL, 'Apple', 2.40, 2);
INSERT INTO sales VALUES (NULL, 'Apple', 4.05, 3);
INSERT INTO sales VALUES (NULL, 'Pear', 6.30, 2);
INSERT INTO sales VALUES (NULL, 'Pear', 12.20, 4);
INSERT INTO sales VALUES (NULL, 'Plum', 4.85, 3);
DELETE FROM sales WHERE sales_id = 5;
DELETE FROM sales WHERE sales_id = 4;
UPDATE sales SET product_amount = 3 where sales_id = 2;
SELECT * from sales_v;3.4 具有快速拍摄功能的物化视图
与上面例子的不同之处在于改变并不立即使用,改变存放在日志表中在一定时间之后才更新物化视图。
除了以上的的例子我们需要另外的日志表
CREATE TABLE sales_mvl (
product_name VARCHAR(128) NOT NULL
, product_price DECIMAL(8,2) NOT NULL
, product_amount SMALLINT NOT NULL
, sales_id INT UNSIGNED NOT NULL
, product_ts TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP()
);不是更新mv日志是填充:
DROP TRIGGER sales_ins;
DELIMITER $$
CREATE TRIGGER sales_ins
AFTER INSERT ON sales
FOR EACH ROW
BEGIN
INSERT INTO sales_mvl
VALUES (NEW.product_name, NEW.product_price, NEW.product_amount, NEW.sales_id, NULL);
END;
$$
DELIMITER ;
DROP TRIGGER sales_del;
DELIMITER $$
CREATE TRIGGER sales_del
AFTER DELETE ON sales
FOR EACH ROW
BEGIN
DELETE FROM sales_mvl
WHERE sales_id = OLD.sales_id;
END;
$$
DELIMITER ;
DROP TRIGGER sales_upd;
DELIMITER $$
CREATE TRIGGER sales_upd
AFTER UPDATE ON sales
FOR EACH ROW
BEGIN
UPDATE sales_mvl
SET product_name = NEW.product_name
, product_price = NEW.product_price
, product_amount = NEW.product_amount
, sales_id = NEW.sales_id
, product_ts = CURRENT_TIMESTAMP()
WHERE sales_id = OLD.sales_id;
END;
$$
DELIMITER ;建立一个更新物化视图的存储过程。可能模式:
l 完全更新(更新至当前)
l 更新(更新到特定时间戳)
l 重建(全部重建清除MV日志表)
DELIMITER $$
CREATE PROCEDURE refresh_mv (
IN method VARCHAR(16)
, IN ts TIMESTAMP
, OUT rc INT
)
BEGIN
IF UPPER(method) = 'REBUILD' THEN
TRUNCATE TABLE sales_mvl;
TRUNCATE TABLE sales_mv;
INSERT INTO sales_mv
SELECT product_name
, SUM(product_price), SUM(product_amount), AVG(product_price), AVG(product_amount)
, COUNT(*)
FROM sales
GROUP BY product_name
;
ELSEIF UPPER(method) = 'REFRESH FULL' THEN
REPLACE INTO sales_mv
SELECT product_name, SUM(price_sum), SUM(amount_sum)
, SUM(price_sum)/SUM(sales_cnt), SUM(amount_sum)/SUM(sales_cnt)
, SUM(sales_cnt)
FROM (
SELECT product_name, price_sum, amount_sum, sales_cnt
FROM sales_mv
UNION ALL
SELECT product_name
, SUM(product_price), SUM(product_amount), COUNT(*)
FROM sales_mvl
GROUP BY product_name
) x
GROUP BY product_name
;
TRUNCATE TABLE sales_mvl;
SET rc = 0;
ELSEIF UPPER(method) = 'REFRESH' THEN
REPLACE INTO sales_mv
SELECT product_name, SUM(price_sum), SUM(amount_sum)
, SUM(price_sum)/SUM(sales_cnt), SUM(amount_sum)/SUM(sales_cnt)
, SUM(sales_cnt)
FROM (
SELECT product_name, price_sum, amount_sum, sales_cnt
FROM sales_mv
UNION ALL
SELECT product_name
, SUM(product_price), SUM(product_amount), COUNT(*)
FROM sales_mvl
WHERE product_ts < ts
GROUP BY product_name
) x
GROUP BY product_name
;
DELETE
FROM sales_mvl
WHERE product_ts < ts
;
SET rc = 0;
ELSE
SET rc = 1;
END IF;
END;
$$
DELIMITER ;检验是否正常工作:
INSERT INTO sales VALUES (NULL, 'Apple', 1.25, 1);
wait some time
INSERT INTO sales VALUES (NULL, 'Apple', 2.40, 2);
wait some time
INSERT INTO sales VALUES (NULL, 'Apple', 4.05, 3);
wait some time
INSERT INTO sales VALUES (NULL, 'Pear', 6.30, 2);
wait some time
INSERT INTO sales VALUES (NULL, 'Pear', 12.20, 4);
wait some time
INSERT INTO sales VALUES (NULL, 'Plum', 4.85, 3);
SELECT * from sales_mvl;
SELECT * from sales_v;
CALL refresh_mv('REFRESH', '2006-11-06 10:57:55', @rc);
SELECT * from sales_v;
CALL refresh_mv('REFRESH FULL', NULL, @rc);
SELECT * from sales_v;
CALL refresh_mv('REBUILD', NULL, @rc);
SELECT * from sales_v;4 结论
MySQL中的触发器(5.0.27)是不是非常快。
大量数据时,物化视图可以提高及时查询速度。
如果插入数据速度上不受限制,这个方法可以提高查询速度。
在大量数据,或者是非内存表、或者内存不够大时,可以提高性能(即,在基础表中查询耗时较大时)
注:感谢小康同学,对本文档的部分翻译
参考文献:
http://www.fromdual.com/mysql-materialized-views
、
分享到:
相关推荐
oracle数据库支持物化视图–不是基于基表的虚表,而是根据表实际存在的实表,即物化视图的数据存储在非易失的存储设备上。 下面实验创建ON COMMIT 的FAST刷新模式,在mysql中用触发器实现insert , update , delete ...
物化视图常用于大数据分析、报告和聚合查询,尤其是在数据仓库和BI(商业智能)系统中,它们可以极大地提高查询效率,减少对源表的直接操作压力。然而,需要注意的是,物化视图占用额外的存储空间,并且维护物化视图...
在本节“MySQL数据库应用案例视频教程下载第11讲 视图”中,我们将深入探讨MySQL数据库中的一个重要概念——视图。视图是数据库管理系统提供的一种数据抽象机制,它允许用户从不同的角度查看和操作数据,而无需直接...
- **物化视图**:虽然MySQL不直接支持物化视图,但在某些情况下可以通过其他方式模拟物化视图的功能,如使用InnoDB表存储查询结果来加速访问。 - **基表**:视图所依赖的原始数据表。对视图的操作最终会影响到基表...
同时,也可以使用物化视图来提高视图的查询效率。 8. 视图的限制 视图也有一些限制,例如: * 视图不能索引 * 视图不能作为索引的基表 * 视图不能作为触发器的基表 视图是 MySQL 中的一种重要概念,可以帮助我们...
Oracle通常提供更高级的性能优化选项,如物化视图、索引组织表等,可能需要在转换后进行调整。 10. **工具使用**: "mysqltooracle_cn"这个工具可能包含了自动化的转换功能,它能帮助解析MySQL的DDL语句并生成...
MySQL 和 PostgreSQL 不支持物化图,但是互联网上有它的实现,可能会满足你的需求。 语言集成 现在,基于 web 的编程应用although 使用了不同的数据库,却是完全平等的。几乎所有的 web 编程语言都支持这些数据库...
10. **高级特性**:涵盖视图、存储过程、触发器等高级功能,以及分区、分区表和物化视图等进阶话题。 通过阅读《Learning MySQL eBook》,读者将不仅能够熟练掌握MySQL的基本操作,还能深入了解其高级特性和最佳...
Oracle支持物化视图,能提供更快的数据访问速度,而MySQL则依赖于虚拟视图。在连接查询中,Oracle的自连接和外连接语法与MySQL有区别,需要特别注意。 安全性和权限管理也是关键区别。Oracle的Role机制和Fine-...
3. 视图和物化视图:利用视图简化查询,物化视图提升性能。 4. 分区与分片:在大型数据库中实现水平和垂直分区,提高查询性能。 九、MySQL与其他技术集成 1. PHP与MySQL:讲解如何在PHP中操作MySQL数据库,实现动态...
本篇文章将探讨如何在MySQL中实现高效的分页,以及相关工具和源码的使用。 首先,我们来了解分页的基本原理。在SQL中,最简单的分页查询通常使用`LIMIT`和`OFFSET`关键字。例如,如果我们想要获取第2页的数据,每页...
在迁移实施过程中,需要考虑到 Oracle 和 MySQL 之间的差异,例如序列和 trigger、物化视图、数据类型映射关系等。同时,需要确保数据的一致性,包括总数内容、结构一致、表名、字段注释、索引、字段类型、分区类型...
Oracle的物化视图在MySQL中没有直接对应的概念,可能需要通过创建临时表或定期更新的视图来实现类似功能。 10. **索引优化**: Oracle支持位图索引、函数索引等高级特性,MySQL则相对较简单,但也有覆盖索引、...
在Oracle项目案例中,创建表的过程类似,但可能需要考虑更多的性能优化策略,如使用物化视图、索引或分区策略。Oracle的SQL语法与MySQL稍有差异,比如使用`CREATE TABLE AS SELECT`创建表,`ALTER TABLE`进行修改,`...
Oracle提供了对物化视图、分区表、全局索引、本地索引的支持,这些特性可以帮助处理大量数据。MySQL虽然支持分区和索引,但是范围和功能比Oracle有限。 在并发查询方面,MySQL的JOIN算法较简单,主要依靠嵌套循环...
这本书详细阐述了如何在实际环境中实现MySQL的高效运行,覆盖了从基础概念到高级技术的诸多方面。 首先,书中详细讲解了MySQL的架构和工作原理,包括存储引擎、查询处理、索引机制等。这有助于读者理解数据是如何被...
Oracle的高级特性,如物化视图、分区表和并行查询,可以优化大数据量的处理速度。 项目源码包含了使用Java Swing开发的用户界面部分。Java Swing是一个轻量级的图形用户界面工具包,可以创建跨平台的桌面应用程序。...
4.4.1物化视图134 4.4.2计数器表135 4.5加快ALTERTABLE操作的速度136 4.5.1只修改.frm文件137 4.5.2快速创建MyISAM索引139 4.6总结140 第5章创建高性能的索引141 5.1索引基础141 5.1.1索引的类型142 5.2...