哈希表也称为散列表,是根据关键字值(key value)而直接进行访问的数据结构。也就是说,它通过把关键字值映射到一个位置来访问记录,以加快查找的速度。这个映射函数称为哈希函数(也称为散列函数),映射过程称为哈希化,存放记录的数组叫做散列表。比如我们可以用下面的方法将关键字映射成数组的下标:arrayIndex = hugeNumber % arraySize。
哈希化之后难免会产生一个问题,那就是对不同的关键字,可能得到同一个散列地址,即同一个数组下标,这种现象称为冲突,那么我们该如何去处理冲突呢?一种方法是开放地址法,即通过系统的方法找到数组的另一个空位,把数据填入,而不再用哈希函数得到的数组下标,因为该位置已经有数据了;另一种方法是创建一个存放链表的数组,数组内不直接存储数据,这样当发生冲突时,新的数据项直接接到这个数组下标所指的链表中,这种方法叫做链地址法。下面针对这两种方法进行讨论。
1.开放地址法
线性探测法
所谓线性探测,即线性地查找空白单元。如果21是要插入数据的位置,但是它已经被占用了,那么就是用22,然后23,以此类推。数组下标一直递增,直到找到空白位。下面是基于线性探测法的哈希表实现代码:
- public class HashTable {
- private DataItem[] hashArray; //DateItem类是数据项,封装数据信息
- private int arraySize;
- private int itemNum; //数组中目前存储了多少项
- private DataItem nonItem; //用于删除项的
- public HashTable() {
- arraySize = 13;
- hashArray = new DataItem[arraySize];
- nonItem = new DataItem(-1); //deleted item key is -1
- }
- public boolean isFull() {
- return (itemNum == arraySize);
- }
- public boolean isEmpty() {
- return (itemNum == 0);
- }
- public void displayTable() {
- System.out.print("Table:");
- for(int j = 0; j < arraySize; j++) {
- if(hashArray[j] != null) {
- System.out.print(hashArray[j].getKey() + " ");
- }
- else {
- System.out.print("** ");
- }
- }
- System.out.println("");
- }
- public int hashFunction(int key) {
- return key % arraySize; //hash function
- }
- public void insert(DataItem item) {
- if(isFull()) {
- //扩展哈希表
- System.out.println("哈希表已满,重新哈希化..");
- extendHashTable();
- }
- int key = item.getKey();
- int hashVal = hashFunction(key);
- while(hashArray[hashVal] != null && hashArray[hashVal].getKey() != -1) {
- ++hashVal;
- hashVal %= arraySize;
- }
- hashArray[hashVal] = item;
- itemNum++;
- }
- /*
- * 数组有固定的大小,而且不能扩展,所以扩展哈希表只能另外创建一个更大的数组,然后把旧数组中的数据插到新的数组中。但是哈希表是根据数组大小计算给定数据的位置的,所以这些数据项不能再放在新数组中和老数组相同的位置上,因此不能直接拷贝,需要按顺序遍历老数组,并使用insert方法向新数组中插入每个数据项。这叫重新哈希化。这是一个耗时的过程,但如果数组要进行扩展,这个过程是必须的。
- */
- public void extendHashTable() { //扩展哈希表
- int num = arraySize;
- itemNum = 0; //重新记数,因为下面要把原来的数据转移到新的扩张的数组中
- arraySize *= 2; //数组大小翻倍
- DataItem[] oldHashArray = hashArray;
- hashArray = new DataItem[arraySize];
- for(int i = 0; i < num; i++) {
- insert(oldHashArray[i]);
- }
- }
- public DataItem delete(int key) {
- if(isEmpty()) {
- System.out.println("Hash table is empty!");
- return null;
- }
- int hashVal = hashFunction(key);
- while(hashArray[hashVal] != null) {
- if(hashArray[hashVal].getKey() == key) {
- DataItem temp = hashArray[hashVal];
- hashArray[hashVal] = nonItem; //nonItem表示空Item,其key为-1
- itemNum--;
- return temp;
- }
- ++hashVal;
- hashVal %= arraySize;
- }
- return null;
- }
- public DataItem find(int key) {
- int hashVal = hashFunction(key);
- while(hashArray[hashVal] != null) {
- if(hashArray[hashVal].getKey() == key) {
- return hashArray[hashVal];
- }
- ++hashVal;
- hashVal %= arraySize;
- }
- return null;
- }
- }
- class DataItem {
- private int iData;
- public DataItem (int data) {
- iData = data;
- }
- public int getKey() {
- return iData;
- }
- }
线性探测有个弊端,即数据可能会发生聚集。一旦聚集形成,它会变得越来越大,那些哈希化后落在聚集范围内的数据项,都要一步步的移动,并且插在聚集的最后,因此使聚集变得更大。聚集越大,它增长的也越快。这就导致了哈希表的某个部分包含大量的聚集,而另一部分很稀疏。
为了解决这个问题,我们可以使用二次探测:二次探测是防止聚集产生的一种方式,思想是探测相隔较远的单元,而不是和原始位置相邻的单元。线性探测中,如果哈希函数计算的原始下标是x, 线性探测就是x+1, x+2, x+3, 以此类推;而在二次探测中,探测的过程是x+1, x+4, x+9, x+16,以此类推,到原始位置的距离是步数的平方。二次探测虽然消除了原始的聚集问题,但是产生了另一种更细的聚集问题,叫二次聚集:比如讲184,302,420和544依次插入表中,它们的映射都是7,那么302需要以1为步长探测,420需要以4为步长探测, 544需要以9为步长探测。只要有一项其关键字映射到7,就需要更长步长的探测,这个现象叫做二次聚集。二次聚集不是一个严重的问题,但是二次探测不会经常使用,因为还有好的解决方法,比如再哈希法。
再哈希法
为了消除原始聚集和二次聚集,现在需要的一种方法是产生一种依赖关键字的探测序列,而不是每个关键字都一样。即:不同的关键字即使映射到相同的数组下标,也可以使用不同的探测序列。再哈希法就是把关键字用不同的哈希函数再做一遍哈希化,用这个结果作为步长,对于指定的关键字,步长在整个探测中是不变的,不同关键字使用不同的步长、经验说明,第二个哈希函数必须具备如下特点:
1. 和第一个哈希函数不同;
2. 不能输出0(否则没有步长,每次探索都是原地踏步,算法将进入死循环)。
专家们已经发现下面形式的哈希函数工作的非常好:stepSize = constant - key % constant; 其中constant是质数,且小于数组容量。
再哈希法要求表的容量是一个质数,假如表长度为15(0-14),非质数,有一个特定关键字映射到0,步长为5,则探测序列是0,5,10,0,5,10,以此类推一直循环下去。算法只尝试这三个单元,所以不可能找到某些空白单元,最终算法导致崩溃。如果数组容量为13, 质数,探测序列最终会访问所有单元。即0,5,10,2,7,12,4,9,1,6,11,3,一直下去,只要表中有一个空位,就可以探测到它。下面看看再哈希法的代码:
- public class HashDouble {
- private DataItem[] hashArray;
- private int arraySize;
- private int itemNum;
- private DataItem nonItem;
- public HashDouble() {
- arraySize = 13;
- hashArray = new DataItem[arraySize];
- nonItem = new DataItem(-1);
- }
- public void displayTable() {
- System.out.print("Table:");
- for(int i = 0; i < arraySize; i++) {
- if(hashArray[i] != null) {
- System.out.print(hashArray[i].getKey() + " ");
- }
- else {
- System.out.print("** ");
- }
- }
- System.out.println("");
- }
- public int hashFunction1(int key) { //first hash function
- return key % arraySize;
- }
- public int hashFunction2(int key) { //second hash function
- return 5 - key % 5;
- }
- public boolean isFull() {
- return (itemNum == arraySize);
- }
- public boolean isEmpty() {
- return (itemNum == 0);
- }
- public void insert(DataItem item) {
- if(isFull()) {
- System.out.println("哈希表已满,重新哈希化..");
- extendHashTable();
- }
- int key = item.getKey();
- int hashVal = hashFunction1(key);
- int stepSize = hashFunction2(key); //用hashFunction2计算探测步数
- while(hashArray[hashVal] != null && hashArray[hashVal].getKey() != -1) {
- hashVal += stepSize;
- hashVal %= arraySize; //以指定的步数向后探测
- }
- hashArray[hashVal] = item;
- itemNum++;
- }
- public void extendHashTable() {
- int num = arraySize;
- itemNum = 0; //重新记数,因为下面要把原来的数据转移到新的扩张的数组中
- arraySize *= 2; //数组大小翻倍
- DataItem[] oldHashArray = hashArray;
- hashArray = new DataItem[arraySize];
- for(int i = 0; i < num; i++) {
- insert(oldHashArray[i]);
- }
- }
- public DataItem delete(int key) {
- if(isEmpty()) {
- System.out.println("Hash table is empty!");
- return null;
- }
- int hashVal = hashFunction1(key);
- int stepSize = hashFunction2(key);
- while(hashArray[hashVal] != null) {
- if(hashArray[hashVal].getKey() == key) {
- DataItem temp = hashArray[hashVal];
- hashArray[hashVal] = nonItem;
- itemNum--;
- return temp;
- }
- hashVal += stepSize;
- hashVal %= arraySize;
- }
- return null;
- }
- public DataItem find(int key) {
- int hashVal = hashFunction1(key);
- int stepSize = hashFunction2(key);
- while(hashArray[hashVal] != null) {
- if(hashArray[hashVal].getKey() == key) {
- return hashArray[hashVal];
- }
- hashVal += stepSize;
- hashVal %= arraySize;
- }
- return null;
- }
- }
2.链地址法
在开放地址法中,通过再哈希法寻找一个空位解决冲突问题,另一个方法是在哈希表每个单元中设置链表(即链地址法),某个数据项的关键字值还是像通常一样映射到哈希表的单元,而数据项本身插入到这个单元的链表中。其他同样映射到这个位置的数据项只需要加到链表中,不需要在原始的数组中寻找空位。下面看看链地址法的代码:
- public class HashChain {
- private SortedList[] hashArray; //数组中存放链表
- private int arraySize;
- public HashChain(int size) {
- arraySize = size;
- hashArray = new SortedList[arraySize];
- //new出每个空链表初始化数组
- for(int i = 0; i < arraySize; i++) {
- hashArray[i] = new SortedList();
- }
- }
- public void displayTable() {
- for(int i = 0; i < arraySize; i++) {
- System.out.print(i + ": ");
- hashArray[i].displayList();
- }
- }
- public int hashFunction(int key) {
- return key % arraySize;
- }
- public void insert(LinkNode node) {
- int key = node.getKey();
- int hashVal = hashFunction(key);
- hashArray[hashVal].insert(node); //直接往链表中添加即可
- }
- public LinkNode delete(int key) {
- int hashVal = hashFunction(key);
- LinkNode temp = find(key);
- hashArray[hashVal].delete(key);//从链表中找到要删除的数据项,直接删除
- return temp;
- }
- public LinkNode find(int key) {
- int hashVal = hashFunction(key);
- LinkNode node = hashArray[hashVal].find(key);
- return node;
- }
- }
下面是链表类的代码,用的是有序链表:
- public class SortedList {
- private LinkNode first;
- public SortedList() {
- first = null;
- }
- public boolean isEmpty() {
- return (first == null);
- }
- public void insert(LinkNode node) {
- int key = node.getKey();
- LinkNode previous = null;
- LinkNode current = first;
- while(current != null && current.getKey() < key) {
- previous = current;
- current = current.next;
- }
- if(previous == null) {
- first = node;
- }
- else {
- node.next = current;
- previous.next = node;
- }
- }
- public void delete(int key) {
- LinkNode previous = null;
- LinkNode current = first;
- if(isEmpty()) {
- System.out.println("chain is empty!");
- return;
- }
- while(current != null && current.getKey() != key) {
- previous = current;
- current = current.next;
- }
- if(previous == null) {
- first = first.next;
- }
- else {
- previous.next = current.next;
- }
- }
- public LinkNode find(int key) {
- LinkNode current = first;
- while(current != null && current.getKey() <= key) {
- if(current.getKey() == key) {
- return current;
- }
- current = current.next;
- }
- return null;
- }
- public void displayList() {
- System.out.print("List(First->Last):");
- LinkNode current = first;
- while(current != null) {
- current.displayLink();
- current = current.next;
- }
- System.out.println("");
- }
- }
- class LinkNode {
- private int iData;
- public LinkNode next;
- public LinkNode(int data) {
- iData = data;
- }
- public int getKey() {
- return iData;
- }
- public void displayLink() {
- System.out.print(iData + " ");
- }
- }
在没有冲突的情况下,哈希表中执行插入和删除操作可以达到O(1)的时间级,这是相当快的,如果发生冲突了,存取时间就依赖后来的长度,查找或删除时也得挨个判断,但是最差也就O(N)级别。
相关推荐
哈希表,又称散列表,是数据结构与算法领域中的一种重要存储结构,它通过将关键字映射到数组的特定位置来实现快速访问。在本资料中,虽然讲师的表述可能并非尽善尽美,但依然能为我们提供有价值的哈希表学习资源。 ...
了解和掌握哈希表及其哈希算法对于任何程序员来说都是至关重要的,无论你是初学者还是资深开发者,都应该深入理解这一数据结构的工作原理和优化技巧。通过实践和学习,你可以创建出更高效、更适应具体场景的哈希表...
哈希表算法实现的C语言源程序 数据结构课程设计用
/******************* 数据结构哈希表算法实现 ********************/
哈希表是一种高效的数据结构,它通过特定的函数——哈希函数,将任意大小的键(key)映射到一个固定大小的数组中,从而实现快速查找、插入和删除操作。在“数据结构哈希表设计实验报告”中,我们可能会涉及到以下几...
哈希表是一种高效的数据结构,用于存储和查询大量数据。在本实验中,我们将设计一个哈希表,以存储30个学生的信息,每个学生的信息包括姓名、学号、电话号码等。为了实现哈希表,我们需要定义哈希函数、处理冲突的...
《武汉大学 C#数据结构与算法》是一门深入探讨计算机科学基础的课程,主要针对C#编程语言,涵盖了数据结构和算法这两个核心概念。在学习这门课程时,你将有机会掌握C#语言如何用于实现高效的数据管理和计算方法。 1...
在IT领域,数据结构与算法是编程基础的重要组成部分,它们直接影响到程序的效率和优化能力。本资源"数据结构与算法代码详解JAVA版"聚焦于使用Java语言来理解和实现这些核心概念。 首先,数据结构是组织和存储数据的...
数据结构与算法是计算机科学的基础,对于理解和解决复杂问题至关重要。在Java这门面向对象的编程语言中,数据结构和算法的实现具有独特的优势。本文将深入探讨Java中常见的数据结构,包括链表、树、图、数组和队列,...
根据提供的文件信息,这里主要关注的是“C++数据结构与算法(第4版)”这一主题,虽然实际内容并未给出具体章节或知识点,但我们可以基于标题、描述以及部分已知内容来推测书中可能涵盖的关键知识点。 ### C++数据...
本文详细介绍了基于算法与数据结构的哈希表设计过程,从需求分析到概要设计,再到详细设计的每一个步骤都进行了详尽的说明。通过实际编码实现了哈希表的基本功能,并对其进行了调试与优化。本项目不仅有助于深入理解...
数据结构与算法是计算机科学中的核心课程,它探讨如何有效地组织和处理数据,以及如何设计和分析解决问题的算法。这份“数据结构与算法-PPT课件”提供了丰富的学习材料,涵盖了多个关键主题。 首先,我们要了解数据...
通过对哈希算法的演示,很快能理解哈希表的功能和作用
本书和传统同类书籍的区别是除了介绍基本的数据结构容器如栈、队列、链表、树...组实现HOCK管理、用链表实现的短信息系统中的CACHE管理,用哈希表实现W}}Server ,卜的CACHE文件管理和用哈希AV L树实现杭wS10DoS攻击等
哈希表是一种高效的数据结构,主要用于快速查找和存储数据。它通过哈希函数将数据映射到一个固定大小的数组中,以达到快速访问的目的。哈希冲突是哈希表面临的主要挑战,解决冲突的方法有开放寻址法、链地址法等。 ...
合工大数据结构C++实验报告拉链法哈希表查找算法
在C语言版的数据结构与算法课程中,哈希表是第四章的重点内容。哈希表的概念是基于关键字与存储位置之间的映射关系,它能够快速定位数据,避免了线性搜索的时间消耗。 哈希函数是构建哈希表的核心,它的作用是将...
《数据结构与算法 Python语言描述》是裘宗燕教授撰写的一本专著,主要面向希望深入理解数据结构和算法,并且希望通过Python语言实现这些概念的读者。这本书是北京大学的教学资源,因其深入浅出的讲解方式而备受推崇...
在这个主题中,我们涵盖了数组、链表、栈、队列、树、图、哈希表等基本数据结构,以及排序、查找、递归、贪心、动态规划和分治等经典算法。以下是对每章练习答案的详细讨论: 1. **数组**:数组是最基础的数据结构...
全书共分为六个部分,分别涵盖了数据结构的基本概念、数组、简单的排序算法、栈与队列、链表、递归等内容,并深入探讨了高级排序算法、二叉树、红黑树、2-3-4树以及外部存储、哈希表、堆、图和加权图等高级主题。...