- 浏览: 201818 次
-
文章分类
最新评论
-
code_xiaoke:
session可是有30分钟有效期的还有如果在分布式的环境下 ...
Java Web 用户登陆示例代码 -
xul0038:
http://www.baidu.com
Java Web 用户登陆示例代码 -
16866:
非常棒,配置信息呢
Nginx负载均衡 -
开发小菜:
什么意思,没明白?能不能写一个例子
JS 实现DIV随浏览器窗口大小变化
搜索排序结果的控制
Lucnen作为搜索引擎中,应用最为广泛和成功的开源框架,它对搜索结果的排序,有一套十分完整的机制来控制;但我们控制搜索结果排序的目的永远只有一个,那就是信息过滤,让用户快速,准确的找到其想要的结果,丰富用户体验。
以前看过一个牛人的博客,总结了4个地方,可对Lucene检索结果的排序进行控制,现在已经记不住。我自己简单整理了下面几个,若有疏漏,欢迎补充:
1. 通过Lucene自有的查询表达式:Lucene提供相当丰富的表达式解析,要细讲就多了去了;这里只强调下,我在项目中用的比较多的是通过对指定域的加权,来影响检索结果(例如:field1:(XXX)^10 or field2:(XXX)^5;其中XXX是用户提交的检索)
2. 权重的控制:这是在建索引的时候就写入索引的,查询时只是读取出来,用乘的方式来对一些检索结果加分。据我自己看Lucene代码,Similarity中也能在建索引时,对权重的写入进行控制;后面会细讲。
3. Controller 模块:Lucene的排序流程控制模块,里面提供的一些接口能让你对打分后的搜索结果进行一些筛选和调整。
4. Similarity 模块:Lucene的搜索结果打分控制模块,也是这里要详细分析的模块。他能让你对一个检索结果的打分进行优化,或面目全非,哈哈。
Lucene的打分公式
要理解Similarity模块对打分结果控制,首先要了解Lucene自己评分原理:相似度评分公式;次公式是目前公认的用户体验较好的一个,原理是根据余弦定理,我在以前的博文中有介绍过。下面是在摘自 《Lucene实战》(第二版)的公式表达式:
其中q 为查询语句,t 是q 分词后的每一项, d为去匹配的文档。
接下来对公式中的每一个函数,进行详解,他们都能在 Similarity 模块中进行控制。
Lucene打分流程
首先,我简单说明下,Lucene对一次查询是如何封装;这涉及到对打分公式是如何调用的,如此一来更能全面的了解打分流程:
第一步的处理肯定是分词,查询语句 => term_1, term_2 … term_n(n∈[1,∞]),紧接着是将这些term 封装成Query对象,总的Query对象是BooleanQuery,它里面包含和分词数相同TermQuery,和分词后的词项一一对应;这是对一个域的查询,若你多个域联合查询,那就会有多个这样的BooleanQuery,被一个更大的BooleanQuery包裹着。
而打分公式,贯穿所有Query,其中一部分在TermQuery中计算,一部分在BooleanQuery计算,最后按此计算出的得分进行排序,就得到了我们的搜索结果。
下面是我通过explain(Query query, int doc) 导出的打分解释:
对照Lucene的打分解释,我们一层一层往里拨(上述每个缩进为一层),每一个函数都能在Similarity中进行控制。
1. 首先第一层:3.3936599 = (MATCH) product of:,是此条记录的总得分。
2. 第二层:8.48414992 = (MATCH) sum of: 它对应一个BooleanQuery,它把它包含的TermQuery的得分累加起来,由于TermQuery总共有5个,此条结果中只匹配了2个,所以最后一行将得分乘以了0.4得到最后的打分,coord()在Similarity中的默认实现如下:
1 /** Implemented as <code>overlap / maxOverlap</code>. */
2 @Override
3 public float coord(int overlap, int maxOverlap) {
4 return overlap / (float)maxOverlap;
5 }
你也可以继承Similarity对此方法重写。
3. 第三层:(MATCH) weight(field:XXX in m), product of: 有2个,它们分别是“三国”、“无双”对应的词项查询TermQuery的得分。
再往里,就是TermQuery的打分规则了,里面的函数已经和公式有所对应了,下面就详细介绍TermQuery中每一项计算的作用。
Similarity 函数详解
TermQuery中有4个函数,都是Similarity里可以控制的函数,他们分别是queryNorm、tf、idf、fieldNorm;其中queryNorm对于某一次搜索中结果的排序没有影响,在一次搜索中queryNorm的值是固定的。这里就不介绍了
tf(t in q)
此函数表示词项T 在该文档中的该字段里 出现的频率;对应到上图的例子中:既是分词后的词项(三国 或 无双)在此条记录中Name字段里出现的频率。当然出现的次数越多,它返回的值越大,也正好反映了此文档的重要性。下面是DefaultSimilarity 中的默认实现的默认实现。
1 /** Implemented as <code>sqrt(freq)</code>. */
2 @Override
3 public float tf(float freq) {
4 return (float)Math.sqrt(freq);
5 }
默认实现是开平方。同样你可以重写此函数。
它实际对结果排序的影响,表现和它的意义一样,一个搜索结果包含的搜索关键词越多,得分越高。
idf(t)
此函数出现了两次,也刚好对应公式中的 idf(t)^2;
这个函数被称作倒频率,表示词项T 在所有文档中出现的频率。若它在所有文档中出现的次数越多,表明这个词项T 越不重要;以下是DefaultSimilarity的默认实现。
1 /** Implemented as <code>log(numDocs/(docFreq+1)) + 1</code>. */
2 @Override
3 public float idf(int docFreq, int numDocs) {
4 return (float)(Math.log(numDocs/(double)(docFreq+1)) + 1.0);
5 }
此函数实际对结果排序的影响,在于当一次搜索包含多个词项时,文档A和B分别包含了其中一个词项;比如A包含“三国”,B包含“无双”;那么“三国”和“无双”的倒频率就会影响,让A、B的得分产生差异了。若词项只有一个,那本次搜索idf(t) 实际对结果排序不会产生影响。
fieldNorm (t)
它的值对应着公式中 boost(t.field in d)×lengthNorm(t.field in d) 的值。其中boost(t.field in d)的值,在创建索引时就被记录下来,而lengthNorm(t.field in d)得值,会在查询过程中计算;它表示此条搜索结果中,给定字段中包含词项的总数;若值越大,得分越低;你可以这么理解;若A文档有包含了1000个词项,关键词出现的频率为10;而B文档包20个词项,相同关键词出现的频率为8;很明显B文档的打分应该要高一些;由此函数可以起到这样的效果。以下是Similarity 的默认实现,函数名在3.0以后变了,原来就叫lengthNorm
01 /** Decodes a normalization factor stored in an index.
02 * <p>
03 * <b>WARNING: If you override this method, you should change the default
04 * Similarity to your implementation with {<a href="http://my.oschina.net/link1212" target="_blank" rel="nofollow">@link</a> Similarity#setDefault(Similarity)}.
05 * Otherwise, your method may not always be called, especially if you omit norms
06 * for some fields.</b>
07 * <a href="http://my.oschina.net/u/244147" target="_blank" rel="nofollow">@see</a> #encodeNormValue(float)
08 */
09 public float decodeNormValue(byte b) {
10 return NORM_TABLE[b & 0xFF]; // & 0xFF maps negative bytes to positive above 127
11 }
至此Lucene打分流程和Similarity模块的函数已经将的差不多了。可以通过这些函数让你的搜索展示出完全不一样的效果,这也需要根据不同的业务慢慢调试,才能得出最优化的搜索结果
原文地址:http://my.oschina.net/BreathL/blog/51498
搜索引擎和网络爬虫技术群293961767欢迎志同道合的朋友加入!
Lucnen作为搜索引擎中,应用最为广泛和成功的开源框架,它对搜索结果的排序,有一套十分完整的机制来控制;但我们控制搜索结果排序的目的永远只有一个,那就是信息过滤,让用户快速,准确的找到其想要的结果,丰富用户体验。
以前看过一个牛人的博客,总结了4个地方,可对Lucene检索结果的排序进行控制,现在已经记不住。我自己简单整理了下面几个,若有疏漏,欢迎补充:
1. 通过Lucene自有的查询表达式:Lucene提供相当丰富的表达式解析,要细讲就多了去了;这里只强调下,我在项目中用的比较多的是通过对指定域的加权,来影响检索结果(例如:field1:(XXX)^10 or field2:(XXX)^5;其中XXX是用户提交的检索)
2. 权重的控制:这是在建索引的时候就写入索引的,查询时只是读取出来,用乘的方式来对一些检索结果加分。据我自己看Lucene代码,Similarity中也能在建索引时,对权重的写入进行控制;后面会细讲。
3. Controller 模块:Lucene的排序流程控制模块,里面提供的一些接口能让你对打分后的搜索结果进行一些筛选和调整。
4. Similarity 模块:Lucene的搜索结果打分控制模块,也是这里要详细分析的模块。他能让你对一个检索结果的打分进行优化,或面目全非,哈哈。
Lucene的打分公式
要理解Similarity模块对打分结果控制,首先要了解Lucene自己评分原理:相似度评分公式;次公式是目前公认的用户体验较好的一个,原理是根据余弦定理,我在以前的博文中有介绍过。下面是在摘自 《Lucene实战》(第二版)的公式表达式:
其中q 为查询语句,t 是q 分词后的每一项, d为去匹配的文档。
接下来对公式中的每一个函数,进行详解,他们都能在 Similarity 模块中进行控制。
Lucene打分流程
首先,我简单说明下,Lucene对一次查询是如何封装;这涉及到对打分公式是如何调用的,如此一来更能全面的了解打分流程:
第一步的处理肯定是分词,查询语句 => term_1, term_2 … term_n(n∈[1,∞]),紧接着是将这些term 封装成Query对象,总的Query对象是BooleanQuery,它里面包含和分词数相同TermQuery,和分词后的词项一一对应;这是对一个域的查询,若你多个域联合查询,那就会有多个这样的BooleanQuery,被一个更大的BooleanQuery包裹着。
而打分公式,贯穿所有Query,其中一部分在TermQuery中计算,一部分在BooleanQuery计算,最后按此计算出的得分进行排序,就得到了我们的搜索结果。
下面是我通过explain(Query query, int doc) 导出的打分解释:
对照Lucene的打分解释,我们一层一层往里拨(上述每个缩进为一层),每一个函数都能在Similarity中进行控制。
1. 首先第一层:3.3936599 = (MATCH) product of:,是此条记录的总得分。
2. 第二层:8.48414992 = (MATCH) sum of: 它对应一个BooleanQuery,它把它包含的TermQuery的得分累加起来,由于TermQuery总共有5个,此条结果中只匹配了2个,所以最后一行将得分乘以了0.4得到最后的打分,coord()在Similarity中的默认实现如下:
1 /** Implemented as <code>overlap / maxOverlap</code>. */
2 @Override
3 public float coord(int overlap, int maxOverlap) {
4 return overlap / (float)maxOverlap;
5 }
你也可以继承Similarity对此方法重写。
3. 第三层:(MATCH) weight(field:XXX in m), product of: 有2个,它们分别是“三国”、“无双”对应的词项查询TermQuery的得分。
再往里,就是TermQuery的打分规则了,里面的函数已经和公式有所对应了,下面就详细介绍TermQuery中每一项计算的作用。
Similarity 函数详解
TermQuery中有4个函数,都是Similarity里可以控制的函数,他们分别是queryNorm、tf、idf、fieldNorm;其中queryNorm对于某一次搜索中结果的排序没有影响,在一次搜索中queryNorm的值是固定的。这里就不介绍了
tf(t in q)
此函数表示词项T 在该文档中的该字段里 出现的频率;对应到上图的例子中:既是分词后的词项(三国 或 无双)在此条记录中Name字段里出现的频率。当然出现的次数越多,它返回的值越大,也正好反映了此文档的重要性。下面是DefaultSimilarity 中的默认实现的默认实现。
1 /** Implemented as <code>sqrt(freq)</code>. */
2 @Override
3 public float tf(float freq) {
4 return (float)Math.sqrt(freq);
5 }
默认实现是开平方。同样你可以重写此函数。
它实际对结果排序的影响,表现和它的意义一样,一个搜索结果包含的搜索关键词越多,得分越高。
idf(t)
此函数出现了两次,也刚好对应公式中的 idf(t)^2;
这个函数被称作倒频率,表示词项T 在所有文档中出现的频率。若它在所有文档中出现的次数越多,表明这个词项T 越不重要;以下是DefaultSimilarity的默认实现。
1 /** Implemented as <code>log(numDocs/(docFreq+1)) + 1</code>. */
2 @Override
3 public float idf(int docFreq, int numDocs) {
4 return (float)(Math.log(numDocs/(double)(docFreq+1)) + 1.0);
5 }
此函数实际对结果排序的影响,在于当一次搜索包含多个词项时,文档A和B分别包含了其中一个词项;比如A包含“三国”,B包含“无双”;那么“三国”和“无双”的倒频率就会影响,让A、B的得分产生差异了。若词项只有一个,那本次搜索idf(t) 实际对结果排序不会产生影响。
fieldNorm (t)
它的值对应着公式中 boost(t.field in d)×lengthNorm(t.field in d) 的值。其中boost(t.field in d)的值,在创建索引时就被记录下来,而lengthNorm(t.field in d)得值,会在查询过程中计算;它表示此条搜索结果中,给定字段中包含词项的总数;若值越大,得分越低;你可以这么理解;若A文档有包含了1000个词项,关键词出现的频率为10;而B文档包20个词项,相同关键词出现的频率为8;很明显B文档的打分应该要高一些;由此函数可以起到这样的效果。以下是Similarity 的默认实现,函数名在3.0以后变了,原来就叫lengthNorm
01 /** Decodes a normalization factor stored in an index.
02 * <p>
03 * <b>WARNING: If you override this method, you should change the default
04 * Similarity to your implementation with {<a href="http://my.oschina.net/link1212" target="_blank" rel="nofollow">@link</a> Similarity#setDefault(Similarity)}.
05 * Otherwise, your method may not always be called, especially if you omit norms
06 * for some fields.</b>
07 * <a href="http://my.oschina.net/u/244147" target="_blank" rel="nofollow">@see</a> #encodeNormValue(float)
08 */
09 public float decodeNormValue(byte b) {
10 return NORM_TABLE[b & 0xFF]; // & 0xFF maps negative bytes to positive above 127
11 }
至此Lucene打分流程和Similarity模块的函数已经将的差不多了。可以通过这些函数让你的搜索展示出完全不一样的效果,这也需要根据不同的业务慢慢调试,才能得出最优化的搜索结果
原文地址:http://my.oschina.net/BreathL/blog/51498
搜索引擎和网络爬虫技术群293961767欢迎志同道合的朋友加入!
发表评论
-
java实现动态切换上网IP (ADSL拨号上网) java开发
2013-04-24 10:06 1323动态切换IP的实现主是也由Windows的rasdial命令提 ... -
JAVA字符串处理函数
2013-04-12 09:21 1168Java中的字符串也是一连串的字符。但是与许多其他的计算机语 ... -
Compass将lucene、Spring、Hibernate三者结合
2013-02-01 11:02 1712版权声明:转载时请以超链接形式标明文章原始出处和作者信息及本声 ... -
Lucene3.0详解
2013-02-01 10:57 1434★第一部分:概述 1. 我 ... -
Java Web 用户登陆示例代码
2013-02-01 09:56 58136实现功能: 1、用户登陆、注销 2、利用session记 ... -
Java对数函数及Java对数运算
2013-02-01 09:47 6817Java对数函数的计算方法非常有问题,然而在API中却有惊人 ... -
Lucene为不同字段指定不同分词器(转)
2013-01-31 17:34 3504在lucene使用过程中,如 ... -
域名管理与解析原理 — 《Java邮件开发详解》读书笔记
2013-01-31 14:56 1749一 基本概念 1. 域名:域名是由圆点分开一串单词或缩写组 ... -
优秀的Java工程师需要掌握的10项技能
2013-01-31 14:04 1878编程专业相对于计算机领域其他专业来讲,是一门比较难以修炼的专业 ... -
Web开发入门不得不看
2013-01-28 17:31 1046如今,各种互联网的Web ... -
MVC框架的映射和解耦
2013-01-25 21:37 847最近在写一个业务上用到的框架,回想起接触过的一些MVC框架, ... -
JAVA发送EMAIL的例子
2013-07-09 09:44 913import javax.mail.*; ... -
SSH + Lucene + 分页 + 排序 + 高亮 模拟简单新闻网站搜索引擎
2012-11-19 09:55 1411前两天看到了一个中国新闻网,这个网站的搜索form的actio ... -
Lucene多字段搜索
2012-11-19 09:53 1068最近在学习Lucene的过程中遇到了需要多域搜索并排序的问题, ... -
lucene之sort
2012-11-16 15:06 1113package cn.zqh.lucene.sort; im ... -
Nginx负载均衡
2012-11-16 11:45 7697最近迷上了Nginx,真实麻雀虽小,五脏俱全..功能实在强大. ... -
Lucene相关度排序的调整
2012-11-16 11:38 1739Lucene的搜索结果默认按 ... -
HashSet重复元素判断
2012-10-15 16:37 9150HashSet不能添加重复的元素,当调用add(Object) ... -
JAVA提高教程(2)-认识Set集合之HashSet
2012-10-09 09:44 986集合在Java里面的作用非 ... -
使用solr搭建你的全文检索
2012-09-28 16:34 1096Solr 是一个可供企业使用的、基于 Lucene 的开箱即用 ...
相关推荐
《Lucene高级应用详解》 在信息技术领域,搜索引擎技术是数据检索的重要手段,而Apache Lucene作为开源全文搜索引擎库,以其高效、灵活的特点被广泛应用于各类项目中。本篇文章将深入探讨Lucene的高级应用,结合...
- **Similarity 评分公式**:Lucene 默认使用 BM25 评分算法来计算文档的相关度得分。BM25 是一种基于概率的评分模型,考虑到了文档长度、词汇频率等因素。 综上所述,Apache Lucene 通过其高度模块化的设计和丰富...
基于改进粒子群算法的DG储能选址定容优化模型:解决电力系统时序性问题的可靠程序解决方案,基于改进粒子群算法的DG储能选址定容模型优化解决电力系统问题,DG储能选址定容模型matlab 程序采用改进粒子群算法,考虑时序性得到分布式和储能的选址定容模型,程序运行可靠 这段程序是一个改进的粒子群算法,主要用于解决电力系统中的优化问题。下面我将对程序进行详细分析。 首先,程序开始时加载了一些数据文件,包括gfjl、fljl、fhjl1、cjgs和fhbl。这些文件可能包含了电力系统的各种参数和数据。 接下来是一些参数的设置,包括三种蓄电池的参数矩阵、迭代次数、种群大小、速度更新参数、惯性权重、储能动作策略和限制条件等。 然后,程序进行了一些初始化操作,包括初始化种群、速度和适应度等。 接下来是主要的迭代过程。程序使用粒子群算法的思想,通过更新粒子的位置和速度来寻找最优解。在每次迭代中,程序计算了每个粒子的适应度,并更新个体最佳位置和全局最佳位置。 在每次迭代中,程序还进行了一些额外的计算,如潮流计算、储能约束等。这些计算可能涉及到电力系统的潮流计算、功率平衡等知识点。 最后,程序输
数学建模相关主题资源2
内容概要:本文详细介绍了一系列用于科学研究、工程项目和技术开发中至关重要的实验程序编写与文档报告撰写的资源和工具。从代码托管平台(GitHub/GitLab/Kaggle/CodeOcean)到云端计算环境(Colab),以及多种类型的编辑器(LaTeX/Microsoft Word/Overleaf/Typora),还有涵盖整个研究周期的各种辅助工具:如可视化工具(Tableau)、数据分析平台(R/Pandas)、项目管理工具(Trello/Jira)、数据管理和伦理审核支持(Figshare/IRB等),最后提供了典型报告的具体结构指导及其范本实例链接(arXiv/PubMed)。这为实验流程中的各个环节提供了系统的解决方案,极大地提高了工作的效率。 适合人群:高校学生、科研工作者、工程技术人员以及从事学术写作的人员,无论是新手入门还是有一定经验的人士都能从中受益。 使用场景及目标:帮助读者高效地准备并开展实验研究活动;促进团队间协作交流;规范研究报告的形式;提高对所收集资料的安全性和隐私保护意识;确保遵循国际公认的伦理准则进行实验。
四轮毂驱动电动汽车稳定性控制策略:基于滑模与模糊神经网络的转矩分配与仿真研究,四轮毂驱动电动汽车稳定性控制:基于滑模与模糊神经网络的转矩分配策略及联合仿真验证,四轮毂驱动电动汽车稳定性控制,分布式驱动转矩分配。 上层基于滑模,模糊神经网络控制器决策横摆力矩,下层基于动态载荷分配,最优分配,平均分配均可做。 simulink与carsim联合仿真。 ,四轮毂驱动;电动汽车稳定性控制;分布式驱动;转矩分配;滑模控制;模糊神经网络控制器;横摆力矩;动态载荷分配;最优分配;平均分配;Simulink仿真;Carsim仿真,四驱电动稳定性控制:滑模与模糊神经网络决策的转矩分配研究
本资源提供了一份详细的PyCharm安装教程,涵盖下载、安装、配置、激活及使用步骤,适合新手快速搭建Python开发环境。
毕业设计
原版宋体.ttf,原版宋体安装文件,安装方式,直接右键安装。
利用Xilinx FPGA内嵌的软核处理器MicroBlaze,加上自主编写的AXI_IIC控制器,实现对IMX327传感器IIC总线的控制,同时辅以UART调试串口,实现系统状态的实时监控与调试。
在 GEE(Google Earth Engine)中,XEE 包是一个用于处理和分析地理空间数据的工具。以下是对 GEE 中 XEE 包的具体介绍: 主要特性 地理数据处理:提供强大的函数和工具,用于处理遥感影像和其他地理空间数据。 高效计算:利用云计算能力,支持大规模数据集的快速处理。 可视化:内置可视化工具,方便用户查看和分析数据。 集成性:可以与其他 GEE API 和工具无缝集成,支持多种数据源。 适用场景 环境监测:用于监测森林砍伐、城市扩展、水体变化等环境问题。 农业分析:分析作物生长、土地利用变化等农业相关数据。 气候研究:研究气候变化对生态系统和人类活动的影响。
毕业设计
整个文件的代码
名字微控制器_STM32_DFU_引导加载程序_dapboo_1740989527.zip
详细介绍及样例数据:https://blog.csdn.net/T0620514/article/details/145991332
anaconda配置pytorch环境
立体仓库控制组态王6.55与三菱PLC联机仿真程序:视频教程与IO表接线图CAD详解,9仓位立体仓库控制系统优化方案:组态王6.55与三菱PLC联机仿真程序视频教程及IO表接线图CAD详解,9仓位立体仓库控制组态王6.55和三菱PLC联机仿真程序+视频+带io表接线图CAD ,关键词:立体仓库;控制组态王6.55;三菱PLC;联机仿真程序;视频;io表接线图;CAD,立体仓库控制组态王与三菱PLC联机仿真程序资源包
基于Maxwwell设计的经典外转子永磁同步电机案例:直流母线24V,大功率与高效率驱动设计,基于Maxwell设计的经典永磁同步电机案例:200W功率,外转子结构,直流母线电压与电机参数详解,基于maxwwell设计的经典200W,2200RPM 外转子,直流母线24V,42极36槽,定子外径81.5 轴向长度15 ,0.86Nm, 永磁同步电机(PMSM)设计案例,该案例可用于生产,或者学习用 ,经典设计案例; 200W; 2200RPM外转子; 直流母线24V; 42极36槽; 定子外径81.5; 轴向长度15; 永磁同步电机(PMSM); 生产学习用。,经典200W永磁同步电机设计案例:Maxwell外转子,高效率2200RPM直流母线系统
C# Modbus RTU协议主站设计工程源码详解:支持多从站访问与多线程实现,带注释开源dll文件,C# Modbus RTU协议主站设计工程源码解析:多线程实现访问多个从站功能的开源dll文件,C# Modbus RTU协议主站设计工程源码带注释,开源dll文件,支持访问多个从站,多线程实现 ,C#; Modbus RTU协议; 主站设计; 工程源码; 注释; 开源dll; 多从站访问; 多线程实现,《C# Modbus RTU主站源码:多线程支持访问多从站开源DLL文件详解》