- 浏览: 200547 次
文章分类
最新评论
-
code_xiaoke:
session可是有30分钟有效期的还有如果在分布式的环境下 ...
Java Web 用户登陆示例代码 -
xul0038:
http://www.baidu.com
Java Web 用户登陆示例代码 -
16866:
非常棒,配置信息呢
Nginx负载均衡 -
开发小菜:
什么意思,没明白?能不能写一个例子
JS 实现DIV随浏览器窗口大小变化
Lucene几种中文分词的总结
博客分类:
聚类搜索引擎
luceneApachePHP.netBlog
IK_CAnalyzer下载地址:http://cn.ziddu.com/download.php?uid=ZrKcmJepZbOb4palZLKWlJiiZaycmps%3D4
目前最新版本的lucene自身提供的StandardAnalyzer已经具备中文分词的功能,但是不一定能够满足大多数应用的需要。
另外网友谈的比较多的中文分词器还有:
CJKAnalyzer
ChineseAnalyzer
IK_CAnalyzer(MIK_CAnalyzer)
还有一些热心网友自己写的比较不错的分词器在此就不说了,有兴趣的可以自己研究研究。
以上三个中文分词器并不是lucene2.2.jar里提供的。
CJKAnalyzer和ChineseAnalyzer分别是lucene-2.2.0目录下contrib目录下analyzers的lucene-analyzers-2.2.0.jar提供的。分别位于cn和cjk目录。
IK_CAnalyzer(MIK_CAnalyzer)是基于分词词典,目前最新的1.4版本是基于lucene2.0开发的。以上分词器各有优劣,比较如下:
import java.io.Reader;
import java.io.StringReader;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.StopFilter;
import org.apache.lucene.analysis.Token;
import org.apache.lucene.analysis.TokenFilter;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.cjk.CJKAnalyzer;
import org.apache.lucene.analysis.cn.ChineseAnalyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.mira.lucene.analysis.IK_CAnalyzer;
import org.mira.lucene.analysis.MIK_CAnalyzer;
public class All_Test {
private static String string = "中华人民共和国在1949年建立,从此开始了新中国的伟大篇章。";
public static void Standard_Analyzer(String str) throws Exception{
Analyzer analyzer = new StandardAnalyzer();
Reader r = new StringReader(str);
StopFilter sf = (StopFilter) analyzer.tokenStream("", r);
System.out.println("=====StandardAnalyzer====");
System.out.println("分析方法:默认没有词只有字(一元分词)");
Token t;
while ((t = sf.next()) != null) {
System.out.println(t.termText());
}
}
public static void CJK_Analyzer(String str) throws Exception{
Analyzer analyzer = new CJKAnalyzer();
Reader r = new StringReader(str);
StopFilter sf = (StopFilter) analyzer.tokenStream("", r);
System.out.println("=====CJKAnalyzer====");
System.out.println("分析方法:交叉双字分割(二元分词)");
Token t;
while ((t = sf.next()) != null) {
System.out.println(t.termText());
}
}
public static void Chiniese_Analyzer(String str) throws Exception{
Analyzer analyzer = new ChineseAnalyzer();
Reader r = new StringReader(str);
TokenFilter tf = (TokenFilter) analyzer.tokenStream("", r);
System.out.println("=====chinese analyzer====");
System.out.println("分析方法:基本等同StandardAnalyzer(一元分词)");
Token t;
while ((t = tf.next()) != null) {
System.out.println(t.termText());
}
}
public static void ik_CAnalyzer(String str) throws Exception{
// Analyzer analyzer = new MIK_CAnalyzer();
Analyzer analyzer = new IK_CAnalyzer();
Reader r = new StringReader(str);
TokenStream ts = (TokenStream)analyzer.tokenStream("", r);
System.out.println("=====IK_CAnalyzer====");
System.out.println("分析方法:字典分词,正反双向搜索");
Token t;
while ((t = ts.next()) != null) {
System.out.println(t.termText());
}
}
public static void main(String[] args) throws Exception{
String str = string;
System.out.println("我们测试的字符串是:"+str);
Standard_Analyzer(str);
CJK_Analyzer(str);
Chiniese_Analyzer(str);
ik_CAnalyzer(str);
}
}
分词结果如下:
我们测试的字符串是:中华人民共和国在1949年建立,从此开始了新中国的伟大篇章。
=====StandardAnalyzer====
分析方法:默认没有词只有字(一元分词)
中
华
人
民
共
和
国
在
1949
年
建
立
从
此
开
始
了
新
中
国
的
伟
大
篇
章
=====CJKAnalyzer====
分析方法:交叉双字分割(二元分词)
中华
华人
人民
民共
共和
和国
国在
1949
年建
建立
从此
此开
开始
始了
了新
新中
中国
国的
的伟
伟大
大篇
篇章
=====chinese analyzer====
分析方法:基本等同StandardAnalyzer(一元分词)
中
华
人
民
共
和
国
在
年
建
立
从
此
开
始
了
新
中
国
的
伟
大
篇
章
=====IK_CAnalyzer====
分析方法:字典分词,正反双向搜索
中华人民共和国
中华人民
中华
华人
人民共和国
人民
人
共和国
共和
1949年
建立
从此
开始
新中国
中国
伟大
大篇
篇章
如果 ik_CAnalyzer(String str) 里采用
Analyzer analyzer = new MIK_CAnalyzer();
那么该方法的分词结果是:
中华人民共和国
1949年
建立
从此
开始
新中国
伟大
大篇
篇章
可以看到各种分词结果各不相同,根据应用的需要可以选择合适的分词器。
关于IKAnalyzer的介绍可以参考:
http://blog.csdn.net/dbigbear/archive/2007/01/24/1492380.aspx
IK_CAnalyzer下载地址:http://cn.ziddu.com/download.php?uid=ZrKcmJepZbOb4palZLKWlJiiZaycmps%3D4
搜索引擎和网络爬虫技术群293961767欢迎志同道合的朋友加入!
博客分类:
聚类搜索引擎
luceneApachePHP.netBlog
IK_CAnalyzer下载地址:http://cn.ziddu.com/download.php?uid=ZrKcmJepZbOb4palZLKWlJiiZaycmps%3D4
目前最新版本的lucene自身提供的StandardAnalyzer已经具备中文分词的功能,但是不一定能够满足大多数应用的需要。
另外网友谈的比较多的中文分词器还有:
CJKAnalyzer
ChineseAnalyzer
IK_CAnalyzer(MIK_CAnalyzer)
还有一些热心网友自己写的比较不错的分词器在此就不说了,有兴趣的可以自己研究研究。
以上三个中文分词器并不是lucene2.2.jar里提供的。
CJKAnalyzer和ChineseAnalyzer分别是lucene-2.2.0目录下contrib目录下analyzers的lucene-analyzers-2.2.0.jar提供的。分别位于cn和cjk目录。
IK_CAnalyzer(MIK_CAnalyzer)是基于分词词典,目前最新的1.4版本是基于lucene2.0开发的。以上分词器各有优劣,比较如下:
import java.io.Reader;
import java.io.StringReader;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.StopFilter;
import org.apache.lucene.analysis.Token;
import org.apache.lucene.analysis.TokenFilter;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.cjk.CJKAnalyzer;
import org.apache.lucene.analysis.cn.ChineseAnalyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.mira.lucene.analysis.IK_CAnalyzer;
import org.mira.lucene.analysis.MIK_CAnalyzer;
public class All_Test {
private static String string = "中华人民共和国在1949年建立,从此开始了新中国的伟大篇章。";
public static void Standard_Analyzer(String str) throws Exception{
Analyzer analyzer = new StandardAnalyzer();
Reader r = new StringReader(str);
StopFilter sf = (StopFilter) analyzer.tokenStream("", r);
System.out.println("=====StandardAnalyzer====");
System.out.println("分析方法:默认没有词只有字(一元分词)");
Token t;
while ((t = sf.next()) != null) {
System.out.println(t.termText());
}
}
public static void CJK_Analyzer(String str) throws Exception{
Analyzer analyzer = new CJKAnalyzer();
Reader r = new StringReader(str);
StopFilter sf = (StopFilter) analyzer.tokenStream("", r);
System.out.println("=====CJKAnalyzer====");
System.out.println("分析方法:交叉双字分割(二元分词)");
Token t;
while ((t = sf.next()) != null) {
System.out.println(t.termText());
}
}
public static void Chiniese_Analyzer(String str) throws Exception{
Analyzer analyzer = new ChineseAnalyzer();
Reader r = new StringReader(str);
TokenFilter tf = (TokenFilter) analyzer.tokenStream("", r);
System.out.println("=====chinese analyzer====");
System.out.println("分析方法:基本等同StandardAnalyzer(一元分词)");
Token t;
while ((t = tf.next()) != null) {
System.out.println(t.termText());
}
}
public static void ik_CAnalyzer(String str) throws Exception{
// Analyzer analyzer = new MIK_CAnalyzer();
Analyzer analyzer = new IK_CAnalyzer();
Reader r = new StringReader(str);
TokenStream ts = (TokenStream)analyzer.tokenStream("", r);
System.out.println("=====IK_CAnalyzer====");
System.out.println("分析方法:字典分词,正反双向搜索");
Token t;
while ((t = ts.next()) != null) {
System.out.println(t.termText());
}
}
public static void main(String[] args) throws Exception{
String str = string;
System.out.println("我们测试的字符串是:"+str);
Standard_Analyzer(str);
CJK_Analyzer(str);
Chiniese_Analyzer(str);
ik_CAnalyzer(str);
}
}
分词结果如下:
我们测试的字符串是:中华人民共和国在1949年建立,从此开始了新中国的伟大篇章。
=====StandardAnalyzer====
分析方法:默认没有词只有字(一元分词)
中
华
人
民
共
和
国
在
1949
年
建
立
从
此
开
始
了
新
中
国
的
伟
大
篇
章
=====CJKAnalyzer====
分析方法:交叉双字分割(二元分词)
中华
华人
人民
民共
共和
和国
国在
1949
年建
建立
从此
此开
开始
始了
了新
新中
中国
国的
的伟
伟大
大篇
篇章
=====chinese analyzer====
分析方法:基本等同StandardAnalyzer(一元分词)
中
华
人
民
共
和
国
在
年
建
立
从
此
开
始
了
新
中
国
的
伟
大
篇
章
=====IK_CAnalyzer====
分析方法:字典分词,正反双向搜索
中华人民共和国
中华人民
中华
华人
人民共和国
人民
人
共和国
共和
1949年
建立
从此
开始
新中国
中国
伟大
大篇
篇章
如果 ik_CAnalyzer(String str) 里采用
Analyzer analyzer = new MIK_CAnalyzer();
那么该方法的分词结果是:
中华人民共和国
1949年
建立
从此
开始
新中国
伟大
大篇
篇章
可以看到各种分词结果各不相同,根据应用的需要可以选择合适的分词器。
关于IKAnalyzer的介绍可以参考:
http://blog.csdn.net/dbigbear/archive/2007/01/24/1492380.aspx
IK_CAnalyzer下载地址:http://cn.ziddu.com/download.php?uid=ZrKcmJepZbOb4palZLKWlJiiZaycmps%3D4
搜索引擎和网络爬虫技术群293961767欢迎志同道合的朋友加入!
发表评论
-
(转)Lucene打分规则与Similarity模块详解
2013-02-06 14:08 1211搜索排序结果的控制 Lu ... -
Compass将lucene、Spring、Hibernate三者结合
2013-02-01 11:02 1679版权声明:转载时请以超链接形式标明文章原始出处和作者信息及本声 ... -
Lucene3.0详解
2013-02-01 10:57 1420★第一部分:概述 1. 我 ... -
Lucene为不同字段指定不同分词器(转)
2013-01-31 17:34 3476在lucene使用过程中,如 ... -
SSH + Lucene + 分页 + 排序 + 高亮 模拟简单新闻网站搜索引擎
2012-11-19 09:55 1388前两天看到了一个中国新闻网,这个网站的搜索form的actio ... -
Lucene多字段搜索
2012-11-19 09:53 1043最近在学习Lucene的过程中遇到了需要多域搜索并排序的问题, ... -
lucene之sort
2012-11-16 15:06 1096package cn.zqh.lucene.sort; im ... -
Lucene相关度排序的调整
2012-11-16 11:38 1732Lucene的搜索结果默认按 ... -
使用solr搭建你的全文检索
2012-09-28 16:34 1068Solr 是一个可供企业使用的、基于 Lucene 的开箱即用 ... -
《Lucene in action》中推荐的Lucene分页方式
2012-09-28 16:33 861在《Lucene in action》 中专门讨论了如何对Hi ... -
lucene索引word/pdf/html/txt文件及检索(搜索引擎)
2012-09-28 16:29 2494因为lucene索引的时候是 ... -
lucene3搜索引擎,索引建立搜索排序分页高亮显示, IKAnalyzer分词
2013-01-27 19:17 1776package com.zjr.service.impl; ... -
用MultiSearcher在多索引中进行搜索
2013-07-09 09:45 1006/** * 多索引进行查询 */ ... -
lucene 中一个Filed中包含多值的范围查询
2013-07-09 09:45 1370package tools.lucene; ... -
使用lucene PrefixQuery 根据拼音前缀查询
2012-07-17 10:52 1379PrefixQuery类似于 数据库中的 like 'a%'查 ... -
lucene 中一个Filed中包含多值的范围查询
2012-07-17 10:50 1038package tools.lucene; ... -
solr部署
2012-07-17 10:41 10161. 认识到solr是作为一个webapp角色; 2. ... -
Solr快速教程
2012-07-17 10:38 1152Solr快速教程 加载及配置步骤: 1.下载最新版本的Solr ... -
PrefixQuery前缀搜索符合的所有放入map
2012-07-17 10:37 1234/** PrefixQuery前缀搜索符合的所有放入map ... -
数据挖掘网址共享
2012-04-13 14:37 1476数据挖掘网络应用搜索引擎企业应用Lotus [/color]知 ...
相关推荐
**Lucene.NET 中文分词技术详解** Lucene.NET 是一个高性能、全文检索库,它是Apache Lucene项目在.NET平台上的实现。作为一个开源的搜索引擎框架,Lucene.NET为开发者提供了强大的文本搜索功能。而在处理中文文档...
以下是对几种常见Lucene中文分词器的总结: 1. CJKAnalyzer:此分词器是Lucene contrib目录下的analyzers子目录中的组件,位于cn目录。CJKAnalyzer主要针对中日韩三国语言进行分词,它基于字符级别进行分词,适用于...
《深入理解Lucene 6.6:拼音与IK中文分词技术详解》 在信息检索领域,Lucene作为一款强大的全文搜索引擎库,被广泛应用。在处理中文文本时,分词是至关重要的一步,它决定了搜索的精度和效果。本文将详细讲解如何在...
使用visual studio 开发的lucene.net和盘古分词实现全文检索。并按照lucene的得分算法进行多条件检索并按照得分算法计算匹配度排序。 可以输入一句话进行检索。 lucene.net的版本为2.9.2 盘古分词的版本为2.3.1 并...
Lucene.Net+盘古分词是一个常见的中文信息检索组合。但是随着盘古分词停止更新,与Lucene.Net3.0无法兼容。为了使得大家少走弯路,本人利用Lucene.Net2.9+盘古分词2.3搭建了一个Demo,里面包含了两个模块的源码,方便...
来自“猎图网 www.richmap.cn”基于IKAnalyzer分词算法的准商业化Lucene中文分词器。 1. 正向全切分算法,42万汉字字符/每秒的处理能力(IBM ThinkPad 酷睿I 1.6G 1G内存 WinXP) 2. 对数量词、地名、路名的...
总结来说,"lucene3.5 + ik中文分词器例子"是一个展示如何使用Lucene进行中文全文检索的示例,它涵盖了从数据抓取、分词处理、索引建立到查询执行的全过程。通过这个实例,开发者可以更好地理解和掌握Lucene与IK分词...
**标题:“如何使用Lucene的中文分词搜索”** 在信息检索和文本处理领域,Apache Lucene是一个强大的全文搜索引擎库,它提供了高级的索引和搜索功能。在处理中文文本时,由于中文句子是由词语组成的,而非单个字符...
Compass 是一个基于 Lucene 的全文检索框架,它提供了一种高级的、面向对象的方式来管理和集成搜索引擎到你的应用程序中。在“compass2.1.4包”中,包含了 Compass 框架的版本 2.1.4,这个版本可能包含了性能优化、...
本文将深入探讨Lucene中文分词器组件的相关知识点。 首先,我们要明白中文分词的重要性。由于中文是以词为基本单位,不像英文那样有明显的空格分隔,因此在进行信息检索时,需要先对中文文本进行分词,将连续的汉字...
总结,理解和掌握Lucene中的中文分词算法源码,不仅有助于我们优化搜索性能,还能为定制化需求提供技术支持。通过深入学习这些分词器的工作原理,开发者可以更好地调整分词策略,以适应特定的应用场景,提升系统的...
这些分词器专门针对中文的特点进行了优化,能够准确地将连续的汉字序列切分成具有实际意义的词语,这一过程称为中文分词。 ikanalyzer和IK Analyzer是基于字典的分词器,它们维护了大规模的中文词汇库,通过查找...
Lucene.Net+盘古分词是一个常见的中文信息检索组合。但是随着盘古分词停止更新,与Lucene.Net3.0无法兼容。为了使得大家少走弯路,本人利用Lucene.Net2.9+盘古分词2.3搭建了一个Demo,里面包含了两个模块的源码,方便...
分词(lucene.Net提供StandardAnalyzer一元分词,按照单个字进行分词,一个汉字一个词) 盘古分词 基于词库的分词,可以维护词库 首先我们新增的SearchHelper类需要将其做成一个单例,使用单例是因为:有许多地方需要...
### Lucene与中文分词技术的研究及应用 #### Lucene简介与原理 Lucene是一款高性能、全功能的文本搜索引擎库,由Java语言编写而成。它为开发者提供了构建全文搜索引擎的能力,而无需关注底层搜索机制的具体实现...
总结,Lucene 3.0.3与盘古分词的结合,为开发者提供了一套强大的中文搜索引擎解决方案。通过合理利用提供的资源,我们可以构建出响应迅速、准确度高的搜索系统,满足用户的信息需求。同时,不断优化字典和分词算法,...
"盘古分词"是一个专门针对中文的分词工具,它可以将中文文本有效地切分成一个个独立的词语,为Lucene.Net提供精确的索引和查询基础。盘古分词以其高效、准确和丰富的词汇库,广泛应用于各种中文信息处理系统,包括...
总结来说,Lucene.NET与盘古分词的结合,使得.NET开发者能够轻松构建功能强大的中文全文搜索引擎。通过合理地配置和优化,我们可以实现快速的数据索引、精确的查询匹配以及友好的结果显示,从而提升应用的搜索体验。...
Lucene是一个高性能、全文检索库,而“lucene中文分词工具包”则为Lucene提供了一个专门针对中文分词的解决方案。这个工具包的核心是IKAnalyzer,它是一个开源且基于Java语言开发的轻量级中文分词工具,旨在提升中文...