1.String/Array/Matrix
在Java中,String是一个包含char数组和其它字段、方法的类。如果没有IDE自动完成代码,下面这个方法大家应该记住:
toCharArray() //get char array of a String Arrays.sort() //sort an array Arrays.toString(char[] a) //convert to string charAt(int x) //get a char at the specific index length() //string length length //array size substring(int beginIndex) substring(int beginIndex, int endIndex) Integer.valueOf()//string to integer String.valueOf()/integer to string
String/arrays很容易理解,但与它们有关的问题常常需要高级的算法去解决,例如动态编程、递归等。
下面列出一些需要高级算法才能解决的经典问题:
- Evaluate Reverse Polish Notation
- Longest Palindromic Substring
- 单词分割
- 字梯
- Median of Two Sorted Arrays
- 正则表达式匹配
- 合并间隔
- 插入间隔
- Two Sum
- 3Sum
- 4Sum
- 3Sum Closest
- String to Integer
- 合并排序数组
- Valid Parentheses
- 实现strStr()
- Set Matrix Zeroes
- 搜索插入位置
- Longest Consecutive Sequence
- Valid Palindrome
- 螺旋矩阵
- 搜索一个二维矩阵
- 旋转图像
- 三角形
- Distinct Subsequences Total
- Maximum Subarray
- 删除重复的排序数组
- 删除重复的排序数组2
- 查找没有重复的最长子串
- 包含两个独特字符的最长子串
- Palindrome Partitioning
2.链表
在Java中实现链表是非常简单的,每个节点都有一个值,然后把它链接到下一个节点。
class Node { int val; Node next; Node(int x) { val = x; next = null; } }
比较流行的两个链表例子就是栈和队列。
栈(Stack)
class Stack{ Node top; public Node peek(){ if(top != null){ return top; } return null; } public Node pop(){ if(top == null){ return null; }else{ Node temp = new Node(top.val); top = top.next; return temp; } } public void push(Node n){ if(n != null){ n.next = top; top = n; } } }
队列(Queue)
class Queue{ Node first, last; public void enqueue(Node n){ if(first == null){ first = n; last = first; }else{ last.next = n; last = n; } } public Node dequeue(){ if(first == null){ return null; }else{ Node temp = new Node(first.val); first = first.next; return temp; } } }
值得一提的是,Java标准库中已经包含一个叫做Stack的类,链表也可以作为一个队列使用(add()和remove())。(链表实现队列接口)如果你在面试过程中,需要用到栈或队列解决问题时,你可以直接使用它们。
在实际中,需要用到链表的算法有:
3.树&堆
这里的树通常是指二叉树。
class TreeNode{ int value; TreeNode left; TreeNode right; }
下面是一些与二叉树有关的概念:
- 二叉树搜索:对于所有节点,顺序是:left children <= current node <= right children;
- 平衡vs.非平衡:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树;
- 满二叉树:除最后一层无任何子节点外,每一层上的所有结点都有两个子结点;
- 完美二叉树(Perfect Binary Tree):一个满二叉树,所有叶子都在同一个深度或同一级,并且每个父节点都有两个子节点;
- 完全二叉树:若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。
堆(Heap)是一个基于树的数据结构,也可以称为优先队列( PriorityQueue),在队列中,调度程序反复提取队列中第一个作业并运行,因而实际情况中某些时间较短的任务将等待很长时间才能结束,或者某些不短小,但具有重要性的作业,同样应当具有优先权。堆即为解决此类问题设计的一种数据结构。
下面列出一些基于二叉树和堆的算法:
- 二叉树前序遍历
- 二叉树中序遍历
- 二叉树后序遍历
- 字梯
- 验证二叉查找树
- 把二叉树变平放到链表里
- 二叉树路径和
- 从前序和后序构建二叉树
- 把有序数组转换为二叉查找树
- 把有序列表转为二叉查找树
- 最小深度二叉树
- 二叉树最大路径和
- 平衡二叉树
4.Graph
与Graph相关的问题主要集中在深度优先搜索和宽度优先搜索。深度优先搜索非常简单,你可以从根节点开始循环整个邻居节点。下面是一个非常简单的宽度优先搜索例子,核心是用队列去存储节点。
第一步,定义一个GraphNode
class GraphNode{ int val; GraphNode next; GraphNode[] neighbors; boolean visited; GraphNode(int x) { val = x; } GraphNode(int x, GraphNode[] n){ val = x; neighbors = n; } public String toString(){ return "value: "+ this.val; } }
第二步,定义一个队列
class Queue{ GraphNode first, last; public void enqueue(GraphNode n){ if(first == null){ first = n; last = first; }else{ last.next = n; last = n; } } public GraphNode dequeue(){ if(first == null){ return null; }else{ GraphNode temp = new GraphNode(first.val, first.neighbors); first = first.next; return temp; } } }
第三步,使用队列进行宽度优先搜索
public class GraphTest { public static void main(String[] args) { GraphNode n1 = new GraphNode(1); GraphNode n2 = new GraphNode(2); GraphNode n3 = new GraphNode(3); GraphNode n4 = new GraphNode(4); GraphNode n5 = new GraphNode(5); n1.neighbors = new GraphNode[]{n2,n3,n5}; n2.neighbors = new GraphNode[]{n1,n4}; n3.neighbors = new GraphNode[]{n1,n4,n5}; n4.neighbors = new GraphNode[]{n2,n3,n5}; n5.neighbors = new GraphNode[]{n1,n3,n4}; breathFirstSearch(n1, 5); } public static void breathFirstSearch(GraphNode root, int x){ if(root.val == x) System.out.println("find in root"); Queue queue = new Queue(); root.visited = true; queue.enqueue(root); while(queue.first != null){ GraphNode c = (GraphNode) queue.dequeue(); for(GraphNode n: c.neighbors){ if(!n.visited){ System.out.print(n + " "); n.visited = true; if(n.val == x) System.out.println("Find "+n); queue.enqueue(n); } } } } }
输出结果:
value: 2 value: 3 value: 5 Find value: 5
value: 4
实际中,基于Graph需要经常用到的算法:
5.排序
不同排序算法的时间复杂度,大家可以到wiki上查看它们的基本思想。
BinSort、Radix Sort和CountSort使用了不同的假设,所有,它们不是一般的排序方法。
下面是这些算法的具体实例,另外,你还可以阅读: Java开发者在实际操作中是如何排序的。
6.递归和迭代
下面通过一个例子来说明什么是递归。
问题:
这里有n个台阶,每次能爬1或2节,请问有多少种爬法?
步骤1:查找n和n-1之间的关系
为了获得n,这里有两种方法:一个是从第一节台阶到n-1或者从2到n-2。如果f(n)种爬法刚好是爬到n节,那么f(n)=f(n-1)+f(n-2)。
步骤2:确保开始条件是正确的
f(0) = 0;
f(1) = 1;
public static int f(int n){ if(n <= 2) return n; int x = f(n-1) + f(n-2); return x; }
递归方法的时间复杂度指数为n,这里会有很多冗余计算。
f(5) f(4) + f(3) f(3) + f(2) + f(2) + f(1) f(2) + f(1) + f(2) + f(2) + f(1)
该递归可以很简单地转换为迭代。
public static int f(int n) { if (n <= 2){ return n; } int first = 1, second = 2; int third = 0; for (int i = 3; i <= n; i++) { third = first + second; first = second; second = third; } return third; }
在这个例子中,迭代花费的时间要少些。关于迭代和递归,你可以去 这里看看。
7.动态规划
动态规划主要用来解决如下技术问题:
- 通过较小的子例来解决一个实例;
- 对于一个较小的实例,可能需要许多个解决方案;
- 把较小实例的解决方案存储在一个表中,一旦遇上,就很容易解决;
- 附加空间用来节省时间。
上面所列的爬台阶问题完全符合这四个属性,因此,可以使用动态规划来解决:
public static int[] A = new int[100]; public static int f3(int n) { if (n <= 2) A[n]= n; if(A[n] > 0) return A[n]; else A[n] = f3(n-1) + f3(n-2);//store results so only calculate once! return A[n]; }
一些基于动态规划的算法:
8.位操作
位操作符:
从一个给定的数n中找位i(i从0开始,然后向右开始)
public static boolean getBit(int num, int i){ int result = num & (1<<i); if(result == 0){ return false; }else{ return true; } }
例如,获取10的第二位:
i=1, n=10 1<<1= 10 1010&10=10 10 is not 0, so return true;
典型的位算法:
9.概率
通常要解决概率相关问题,都需要很好地格式化问题,下面提供一个简单的例子:
有50个人在一个房间,那么有两个人是同一天生日的可能性有多大?(忽略闰年,即一年有365天)
算法:
public static double caculateProbability(int n){ double x = 1; for(int i=0; i<n; i++){ x *= (365.0-i)/365.0; } double pro = Math.round((1-x) * 100); return pro/100; }
结果:
calculateProbability(50) = 0.97
10.组合和排列
组合和排列的主要差别在于顺序是否重要。
例1:
1、2、3、4、5这5个数字,输出不同的顺序,其中4不可以排在第三位,3和5不能相邻,请问有多少种组合?
例2:
有5个香蕉、4个梨、3个苹果,假设每种水果都是一样的,请问有多少种不同的组合?
基于它们的一些常见算法
来自:ProgramCreek CSDN
相关推荐
编程面试常见的算法汇总编程面试常见的算法汇总编程面试常见的算法汇总编程面试常见的算法汇总编程面试常见的算法汇总
面试十大算法汇总+常见题目解答.pdf
本文将详细介绍C++和C语言中7种常见的排序算法,旨在帮助你提升技能,顺利通过面试。 1. 冒泡排序(Bubble Sort) 冒泡排序是一种简单的排序算法,它重复地遍历待排序的数列,一次比较两个元素,如果他们的顺序错误...
CV算法岗知识点汇总+面试常见问答(计算机视觉、机器学习、图像处理、编程语言、数据结构).zipCV算法岗知识点汇总+面试常见问答(计算机视觉、机器学习、图像处理、编程语言、数据结构).zipCV算法岗知识点汇总+面试...
提供的压缩文件中的"que.txt"可能包含具体的面试题,"算法面试题大全.doc"可能是各种算法问题的集合,而"程序员面试智力、算法题汇总一.pdf"则可能包含更多智力和算法题目,这些资源可以帮助面试者深入理解和练习...
11、英语面试常见问题.htm 12、英语面试问答.htm 常见C++面试题汇总(最全c语言面试题) 13、最全的C-C++试题集和答案1.txt 14、最全的C-C++试题集和答案2.txt 常见C++面试题汇总(最全c语言面试题)
本资源“百度面试算法题汇总”旨在为面试者提供一系列的算法题目和解决方案,帮助他们提升在面试中的表现。下面将详细探讨这些算法题目涉及的知识点,并给出相应的解题思路。 首先,面试中常见的算法题型包括但不...
Java算法面试是考察开发者技能的重要环节,涉及到的问题广泛且深入,涵盖了数据结构、算法原理以及实际编程能力。以下是一些热门的Java算法面试题及其详细解释: 1. **双指针问题**:常用于解决数组相关的问题,如...
读书笔记:PHP面试常见知识汇总php数据库网络算法等等
本资源"java常见算法汇总"旨在提供一系列Java实现的经典算法,帮助开发者巩固基础,提升编程能力。 1. **排序算法**: - 冒泡排序:简单的交换排序,时间复杂度为O(n^2)。 - 选择排序:每次选择最小元素并放到...
"算法经典题目汇总.doc"可能包含了各种算法竞赛或面试中常见的题目,比如排序算法(快速排序、归并排序、堆排序)、搜索算法(深度优先搜索、广度优先搜索)、图论问题(Floyd-Warshall算法、Dijkstra算法)等。...
本文将深入探讨这些面试常见难题,并提供一些应对策略。 首先,面试官可能会问到基础概念问题,如数据结构和算法。例如,“请解释什么是二分查找法?”或“描述一下链表和数组的区别”。对于这类问题,了解并能够...
本PDF文档收录了大量这类题目,涵盖了面试中最常见的智力题、算法题和编程题,并且特别提到了大数据处理方面的内容,这对于应聘者来说是非常有价值的资源。本文将根据给出的内容部分详细解读涉及的知识点。 首先,...
本资料"面试常见编程题汇总包含快排,二分查找"聚焦于两个经典的算法:快速排序(Quick Sort)和二分查找(Binary Search),这些都是在实际工作中频繁使用的高效算法。 快速排序是一种基于分治思想的排序算法,由C...
这份“AI算法岗面试经验汇总”可能会提供这些方面的详细解答和实用技巧。 首先,机器学习是AI算法岗位的基础,面试中可能会涉及到监督学习、无监督学习、强化学习的基本概念,如线性回归、逻辑回归、SVM、决策树、...
CV(计算机视觉)算法岗的知识点和面试问答可以涵盖多个方面,包括计算机视觉、机器学习、图像处理、编程语言和数据结构等。以下是对这些方面的简要概述和面试中可能出现的问题: 一、计算机视觉 知识点: 计算机...
这份"C++面试真题汇总和解答"提供了全面的面试问题及答案,旨在帮助你更好地理解C++的关键概念,提升你的面试竞争力。以下是一些可能涵盖的重要知识点: 1. **基本语法**:包括变量声明、类型转换、运算符优先级、...
C++面试题笔试题C++ 数据结构算法笔试题资料合集: 50个C、C++面试题.pdf C++ 数据结构、算法笔试题.docx C++基础面试题.docx C++开发工程师面试题库.docx C++技能测试试卷一及答案.docx C++技能测试试卷二及答案....
这份2021年的面试经验汇总,涵盖了百度、阿里、美团、字节跳动等知名互联网企业的算法面试题目,对求职者来说具有极高的参考价值。 一、百度面试题 百度作为国内搜索引擎巨头,其算法面试题往往注重实际问题的解决...