一、ReentrantLock 类
1.1 什么是reentrantlock
1.2 ReentrantLock与synchronized的比较
相同:ReentrantLock提供了synchronized类似的功能和内存语义。
不同:
(1)ReentrantLock功能性方面更全面,比如时间锁等候,可中断锁等候,锁投票等,因此更有扩展性。在多个条件变量和高度竞争锁的地方,用ReentrantLock更合适,ReentrantLock还提供了Condition,对线程的等待和唤醒等操作更加灵活,一个ReentrantLock可以有多个Condition实例,所以更有扩展性。
(2)ReentrantLock 的性能比synchronized会好点。
(3)ReentrantLock提供了可轮询的锁请求,他可以尝试的去取得锁,如果取得成功则继续处理,取得不成功,可以等下次运行的时候处理,所以不容易产生死锁,而synchronized则一旦进入锁请求要么成功,要么一直阻塞,所以更容易产生死锁。
1.3 ReentrantLock扩展的功能
1.3.1 实现可轮询的锁请求
如果你不能获得所有需要的锁,那么使用可轮询的获取方式使你能够重新拿到控制权,它会释放你已经获得的这些锁,然后再重新尝试。可轮询的锁获取模式,由tryLock()方法实现。此方法仅在调用时锁为空闲状态才获取该锁。如果锁可用,则获取锁,并立即返回值true。如果锁不可用,则此方法将立即返回值false。此方法的典型使用语句如下:
- Lock lock = ...;
- if (lock.tryLock()) {
- try {
- // manipulate protected state
- } finally {
- lock.unlock();
- }
- } else {
- // perform alternative actions
- }
1.3.2 实现可定时的锁请求
动调用了阻塞方法,定时锁能够在时间预算内设定相应的超时。如果活动在期待的时间内没能获得结果,定时锁能使程序提前返回。可定时的锁获取模式,由tryLock(long, TimeUnit)方法实现。
1.3.3 实现可中断的锁获取请求
1.4 ReentrantLock不好与需要注意的地方
二、条件变量Condition
条件变量很大一个程度上是为了解决Object.wait/notify/notifyAll难以使用的问题。
条件(也称为条件队列 或条件变量)为线程提供了一个含义,以便在某个状态条件现在可能为 true 的另一个线程通知它之前,一直挂起该线程(即让其“等待”)。因为访问此共享状态信息发生在不同的线程中,所以它必须受保护,因此要将某种形式的锁与该条件相关联。等待提供一个条件的主要属性是:以原子方式 释放相关的锁,并挂起当前线程,就像 Object.wait
做的那样。
上述API说明表明条件变量需要与锁绑定,而且多个Condition需要绑定到同一锁上。前面的Lock中提到,获取一个条件变量的方法是Lock.newCondition()。
- void await() throws InterruptedException;
- void awaitUninterruptibly();
- long awaitNanos(long nanosTimeout) throws InterruptedException;
- boolean await(long time, TimeUnit unit) throws InterruptedException;
- boolean awaitUntil(Date deadline) throws InterruptedException;
- void signal();
- void signalAll();
以上是Condition接口定义的方法,await*对应于Object.wait,signal对应于Object.notify,signalAll对应于Object.notifyAll。特别说明的是Condition的接口改变名称就是为了避免与Object中的wait/notify/notifyAll的语义和使用上混淆,因为Condition同样有wait/notify/notifyAll方法。
每一个Lock可以有任意数据的Condition对象,Condition是与Lock绑定的,所以就有Lock的公平性特性:如果是公平锁,线程为按照FIFO的顺序从Condition.await中释放,如果是非公平锁,那么后续的锁竞争就不保证FIFO顺序了。
一个使用Condition实现生产者消费者的模型例子如下。
- import java.util.concurrent.locks.Condition;
- import java.util.concurrent.locks.Lock;
- import java.util.concurrent.locks.ReentrantLock;
- public class ProductQueue<T> {
- private final T[] items;
- private final Lock lock = new ReentrantLock();
- private Condition notFull = lock.newCondition();
- private Condition notEmpty = lock.newCondition();
- //
- private int head, tail, count;
- public ProductQueue(int maxSize) {
- items = (T[]) new Object[maxSize];
- }
- public ProductQueue() {
- this(10);
- }
- public void put(T t) throws InterruptedException {
- lock.lock();
- try {
- while (count == getCapacity()) {
- notFull.await();
- }
- items[tail] = t;
- if (++tail == getCapacity()) {
- tail = 0;
- }
- ++count;
- notEmpty.signalAll();
- } finally {
- lock.unlock();
- }
- }
- public T take() throws InterruptedException {
- lock.lock();
- try {
- while (count == 0) {
- notEmpty.await();
- }
- T ret = items[head];
- items[head] = null;//GC
- //
- if (++head == getCapacity()) {
- head = 0;
- }
- --count;
- notFull.signalAll();
- return ret;
- } finally {
- lock.unlock();
- }
- }
- public int getCapacity() {
- return items.length;
- }
- public int size() {
- lock.lock();
- try {
- return count;
- } finally {
- lock.unlock();
- }
- }
- }
在这个例子中消费take()需要 队列不为空,如果为空就挂起(await()),直到收到notEmpty的信号;生产put()需要队列不满,如果满了就挂起(await()),直到收到notFull的信号。
可能有人会问题,如果一个线程lock()对象后被挂起还没有unlock,那么另外一个线程就拿不到锁了(lock()操作会挂起),那么就无法通知(notify)前一个线程,这样岂不是“死锁”了?
2.1 await* 操作
上一节中说过多次ReentrantLock是独占锁,一个线程拿到锁后如果不释放,那么另外一个线程肯定是拿不到锁,所以在lock.lock()和lock.unlock()之间可能有一次释放锁的操作(同样也必然还有一次获取锁的操作)。我们再回头看代码,不管take()还是put(),在进入lock.lock()后唯一可能释放锁的操作就是await()了。也就是说await()操作实际上就是释放锁,然后挂起线程,一旦条件满足就被唤醒,再次获取锁!
- public final void await() throws InterruptedException {
- if (Thread.interrupted())
- throw new InterruptedException();
- Node node = addConditionWaiter();
- int savedState = fullyRelease(node);
- int interruptMode = 0;
- while (!isOnSyncQueue(node)) {
- LockSupport.park(this);
- if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
- break;
- }
- if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
- interruptMode = REINTERRUPT;
- if (node.nextWaiter != null)
- unlinkCancelledWaiters();
- if (interruptMode != 0)
- reportInterruptAfterWait(interruptMode);
- }
上面是await()的代码片段。上一节中说过,AQS在获取锁的时候需要有一个CHL的FIFO队列,所以对于一个Condition.await()而言,如果释放了锁,要想再一次获取锁那么就需要进入队列,等待被通知获取锁。完整的await()操作是安装如下步骤进行的:
- 将当前线程加入Condition锁队列。特别说明的是,这里不同于AQS的队列,这里进入的是Condition的FIFO队列。后面会具体谈到此结构。进行2。
- 释放锁。这里可以看到将锁释放了,否则别的线程就无法拿到锁而发生死锁。进行3。
- 自旋(while)挂起,直到被唤醒或者超时或者CACELLED等。进行4。
- 获取锁(acquireQueued)。并将自己从Condition的FIFO队列中释放,表明自己不再需要锁(我已经拿到锁了)。
这里再回头介绍Condition的数据结构。我们知道一个Condition可以在多个地方被await*(),那么就需要一个FIFO的结构将这些Condition串联起来,然后根据需要唤醒一个或者多个(通常是所有)。所以在Condition内部就需要一个FIFO的队列。
- private transient Node firstWaiter;
- private transient Node lastWaiter;
上面的两个节点就是描述一个FIFO的队列。我们再结合前面提到的节点(Node)数据结构。我们就发现Node.nextWaiter就派上用场了!nextWaiter就是将一系列的Condition.await*串联起来组成一个FIFO的队列。
2.2 signal/signalAll 操作
await*()清楚了,现在再来看signal/signalAll就容易多了。按照signal/signalAll的需求,就是要将Condition.await*()中FIFO队列中第一个Node唤醒(或者全部Node)唤醒。尽管所有Node可能都被唤醒,但是要知道的是仍然只有一个线程能够拿到锁,其它没有拿到锁的线程仍然需要自旋等待,就上上面提到的第4步(acquireQueued)。
- private void doSignal(Node first) {
- do {
- if ( (firstWaiter = first.nextWaiter) == null)
- lastWaiter = null;
- first.nextWaiter = null;
- } while (!transferForSignal(first) &&
- (first = firstWaiter) != null);
- }
- private void doSignalAll(Node first) {
- lastWaiter = firstWaiter = null;
- do {
- Node next = first.nextWaiter;
- first.nextWaiter = null;
- transferForSignal(first);
- first = next;
- } while (first != null);
- }
上面的代码很容易看出来,signal就是唤醒Condition队列中的第一个非CANCELLED节点线程,而signalAll就是唤醒所有非CANCELLED节点线程。当然了遇到CANCELLED线程就需要将其从FIFO队列中剔除。
- final boolean transferForSignal(Node node) {
- if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
- return false;
- Node p = enq(node);
- int c = p.waitStatus;
- if (c > 0 || !compareAndSetWaitStatus(p, c, Node.SIGNAL))
- LockSupport.unpark(node.thread);
- return true;
- }
上面就是唤醒一个await*()线程的过程,根据前面的小节介绍的,如果要unpark线程,并使线程拿到锁,那么就需要线程节点进入AQS的队列。所以可以看到在LockSupport.unpark之前调用了enq(node)操作,将当前节点加入到AQS队列。
相关推荐
Java中的`ReentrantLock`是Java并发包`java.util.concurrent.locks`中的一个高级锁机制,它是可重入的互斥锁,具有与`synchronized`关键字...在设计和实现多线程程序时,了解和正确使用`ReentrantLock`是非常重要的。
Java多线程中ReentrantLock与Condition详解 ReentrantLock是Java多线程中一种高级的锁机制,它实现了Lock接口,提供了与synchronized相同的并发性和内存语义,但添加了一些特性,如锁投票、定时锁等候和可中断锁...
Java多线程编程是Java开发中的重要组成部分,它允许程序同时执行多个任务,极大地提高了程序的效率和响应性。在Java中,多线程主要通过继承Thread类或实现Runnable接口来实现。本教程《Java多线程编程核心技术》将...
Java多线程是Java编程中的核心概念,它允许程序同时执行多个任务,提高了系统的效率和响应性。在Java中,多线程的实现主要通过两种方式:继承Thread类和实现Runnable接口。理解并掌握多线程的使用对于任何Java开发者...
总结来说,ReentrantLock在Java多线程编程中扮演着关键角色,提供了灵活的锁管理机制,包括公平性和非公平性选择,以及可中断和定时的锁获取方式。了解和熟练掌握ReentrantLock的使用,能够帮助开发者编写出高效、...
本文将深入探讨Java多线程的相关概念、线程类和接口的使用,以及线程的同步与互斥。 首先,我们需要理解进程与线程的基本概念。程序是一组静态指令的集合,而进程则是程序在执行过程中的一个实例,拥有独立的内存...
这篇资料深入探讨了Java多线程的相关知识,包括线程的创建、同步与通信、线程的状态管理等。 1. **线程创建** - 继承Thread类:创建一个新类,该类继承自Thread类,并重写run()方法,然后创建该类的实例并调用...
Java多线程编程是Java开发中的重要组成部分,它允许程序同时执行多个任务,极大地提高了程序的效率和响应性。在现代计算机系统中,多线程技术尤其关键,因为它们能够充分利用多核处理器的能力。这份"Java多线程编程...
Java多线程是Java编程中的核心概念,尤其对于高级开发者来说,掌握多线程的深入理解和应用至关重要。这本书“java多线程进阶”显然旨在帮助读者深化这方面的理解,打通编程中的“任督二脉”,使开发者能够更加熟练地...
5. **ReentrantLock和Condition**:如果不想使用`synchronized`关键字,可以使用`java.util.concurrent.locks.ReentrantLock`和`Condition`接口,它们提供了更细粒度的锁控制和更灵活的等待/通知机制。 6. **死锁和...
总之,Java多线程技术是软件开发中的重要技能,它涉及到线程池的使用、线程同步和通信等多个方面。通过学习和理解`MaxThreadCountTest`中的例子,开发者可以更好地掌握如何在实际项目中控制线程数量,优化程序性能,...
Java多线程设计模式是Java开发中的重要领域,它涉及到并发编程、系统性能优化以及程序的稳定性。在Java中,多线程允许程序同时执行多个任务,极大地提升了程序的执行效率。本资源提供了详细的Java多线程设计模式的...
Java多线程是Java编程语言的重要特性之一,它允许开发者在单个程序中同时运行多个部分,这些部分可以并发执行。掌握Java多线程技术对于设计高效的并发程序、充分利用多核处理器资源、提高应用程序的执行效率至关重要...
Java中的多线程编程在处理并发问题时是至关重要的,特别是在高并发环境下,对资源的精确控制成为提高系统效率的关键。本篇文章将深入探讨`ReentrantLock`的使用,它是Java并发包`java.util.concurrent.locks`中的一...
Java多线程是Java编程中的重要概念,它允许程序同时执行多个任务,提高了程序的运行效率和资源利用率。本笔记全面涵盖了多线程的学习,包括基础理论和实践代码,旨在帮助开发者深入理解并掌握Java多线程技术。 一、...
Java多线程编程是Java开发中的重要组成部分,它允许程序同时执行多个任务,极大地提高了程序的效率和响应性。在Java中,多线程可以通过实现Runnable接口或继承Thread类来创建。下面我们将深入探讨Java多线程编程的...
Java多线程与锁是Java并发编程中的核心概念,它们对于构建高效、可扩展的并发应用程序至关重要。在Java中,多线程允许程序同时执行多个任务,提高CPU的利用率,而锁则是用来控制多线程间共享资源的访问,确保数据的...
Java多线程则是为了解决这个问题而引入的概念。通过创建多个线程,程序可以在同一时间执行多个任务,提高了CPU的利用率和程序的响应速度。多线程可以分为并发和并行两种。并发是在单核CPU中,通过快速切换线程执行来...
Java多线程ReentrantLock互斥锁详解 ReentrantLock是Java多线程编程中的一种锁机制,它可以实现线程之间的同步访问资源。ReentrantLock的主要特点是可以重入,即一个线程可以多次获得锁,而不需要释放锁。这种机制...