以前在<<编写高质量代码-改善Java程序的151个建议>>一书中看到有一节的标题是“CyclicBarrier让多线程齐步走”,觉得这标题挺不错的,所以在写这篇博文的时候也采用了这个名字。
本文首先会介绍CyclicBarrier辅助工具类,其次将用CyclicBarrier工具类来完成一个实例,最后将给出CyclicBarrier和CountDownLatch的几点比较。
之前关于CountDownLatch的博文,请参考如下链接:
Java并发编程: 使用CountDownLatch协调子线程 -
http://mouselearnjava.iteye.com/blog/1915438
1. CyclicBarrier工具类介绍。
CyclicBarrier是一个同步辅助工具类,它允许一组线程相互等待,直到到达一个公共的栏栅点。CyclicBarriers对于那些包含一组固定大小线程,并且这些线程必须不时地相互等待的程序非常有用。之所以将其称之为循环的Barrier是因为该Barrier在等待的线程释放之后可以重用。
CyclicBarrier 支持一个可选的 Runnable 命令,在一组线程中的最后一个线程到达之后(但在释放所有线程之前),该命令只在每个屏障点运行一次。若在继续所有参与线程之前更新共享状态,此屏障操作 很有用。
上面的介绍来自于CyclicBarrier类的注释。
- /**
- * A synchronization aid that allows a set of threads to all wait for
- * each other to reach a common barrier point. CyclicBarriers are
- * useful in programs involving a fixed sized party of threads that
- * must occasionally wait for each other. The barrier is called
- * [i]cyclic[/i] because it can be re-used after the waiting threads
- * are released.
- *
- * <p>A <tt>CyclicBarrier</tt> supports an optional {@link Runnable} command
- * that is run once per barrier point, after the last thread in the party
- * arrives, but before any threads are released.
- * This [i]barrier action[/i] is useful
- * for updating shared-state before any of the parties continue.
- */
CyclicBarrier采用Condition和Lock来完成线程之间的同步。相关的类图是CyclicBarrier类内容如下:
- /*
- * @(#)CyclicBarrier.java 1.12 06/03/30
- *
- * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
- * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
- */
- package java.util.concurrent;
- import java.util.concurrent.locks.*;
- /**
- * A synchronization aid that allows a set of threads to all wait for
- * each other to reach a common barrier point. CyclicBarriers are
- * useful in programs involving a fixed sized party of threads that
- * must occasionally wait for each other. The barrier is called
- * [i]cyclic[/i] because it can be re-used after the waiting threads
- * are released.
- *
- * <p>A <tt>CyclicBarrier</tt> supports an optional {@link Runnable} command
- * that is run once per barrier point, after the last thread in the party
- * arrives, but before any threads are released.
- * This [i]barrier action[/i] is useful
- * for updating shared-state before any of the parties continue.
- *
- * <p><b>Sample usage:</b> Here is an example of
- * using a barrier in a parallel decomposition design:
- * <pre>
- * class Solver {
- * final int N;
- * final float[][] data;
- * final CyclicBarrier barrier;
- *
- * class Worker implements Runnable {
- * int myRow;
- * Worker(int row) { myRow = row; }
- * public void run() {
- * while (!done()) {
- * processRow(myRow);
- *
- * try {
- * barrier.await();
- * } catch (InterruptedException ex) {
- * return;
- * } catch (BrokenBarrierException ex) {
- * return;
- * }
- * }
- * }
- * }
- *
- * public Solver(float[][] matrix) {
- * data = matrix;
- * N = matrix.length;
- * barrier = new CyclicBarrier(N,
- * new Runnable() {
- * public void run() {
- * mergeRows(...);
- * }
- * });
- * for (int i = 0; i < N; ++i)
- * new Thread(new Worker(i)).start();
- *
- * waitUntilDone();
- * }
- * }
- * </pre>
- * Here, each worker thread processes a row of the matrix then waits at the
- * barrier until all rows have been processed. When all rows are processed
- * the supplied {@link Runnable} barrier action is executed and merges the
- * rows. If the merger
- * determines that a solution has been found then <tt>done()</tt> will return
- * <tt>true</tt> and each worker will terminate.
- *
- * <p>If the barrier action does not rely on the parties being suspended when
- * it is executed, then any of the threads in the party could execute that
- * action when it is released. To facilitate this, each invocation of
- * {@link #await} returns the arrival index of that thread at the barrier.
- * You can then choose which thread should execute the barrier action, for
- * example:
- * <pre> if (barrier.await() == 0) {
- * // log the completion of this iteration
- * }</pre>
- *
- * <p>The <tt>CyclicBarrier</tt> uses an all-or-none breakage model
- * for failed synchronization attempts: If a thread leaves a barrier
- * point prematurely because of interruption, failure, or timeout, all
- * other threads waiting at that barrier point will also leave
- * abnormally via {@link BrokenBarrierException} (or
- * {@link InterruptedException} if they too were interrupted at about
- * the same time).
- *
- * <p>Memory consistency effects: Actions in a thread prior to calling
- * {@code await()}
- * [url=package-summary.html#MemoryVisibility]<i>happen-before</i>[/url]
- * actions that are part of the barrier action, which in turn
- * <i>happen-before</i> actions following a successful return from the
- * corresponding {@code await()} in other threads.
- *
- * @since 1.5
- * @see CountDownLatch
- *
- * @author Doug Lea
- */
- public class CyclicBarrier {
- /**
- * Each use of the barrier is represented as a generation instance.
- * The generation changes whenever the barrier is tripped, or
- * is reset. There can be many generations associated with threads
- * using the barrier - due to the non-deterministic way the lock
- * may be allocated to waiting threads - but only one of these
- * can be active at a time (the one to which <tt>count</tt> applies)
- * and all the rest are either broken or tripped.
- * There need not be an active generation if there has been a break
- * but no subsequent reset.
- */
- private static class Generation {
- boolean broken = false;
- }
- /** The lock for guarding barrier entry */
- private final ReentrantLock lock = new ReentrantLock();
- /** Condition to wait on until tripped */
- private final Condition trip = lock.newCondition();
- /** The number of parties */
- private final int parties;
- /* The command to run when tripped */
- private final Runnable barrierCommand;
- /** The current generation */
- private Generation generation = new Generation();
- /**
- * Number of parties still waiting. Counts down from parties to 0
- * on each generation. It is reset to parties on each new
- * generation or when broken.
- */
- private int count;
- /**
- * Updates state on barrier trip and wakes up everyone.
- * Called only while holding lock.
- */
- private void nextGeneration() {
- // signal completion of last generation
- trip.signalAll();
- // set up next generation
- count = parties;
- generation = new Generation();
- }
- /**
- * Sets current barrier generation as broken and wakes up everyone.
- * Called only while holding lock.
- */
- private void breakBarrier() {
- generation.broken = true;
- count = parties;
- trip.signalAll();
- }
- /**
- * Main barrier code, covering the various policies.
- */
- private int dowait(boolean timed, long nanos)
- throws InterruptedException, BrokenBarrierException,
- TimeoutException {
- final ReentrantLock lock = this.lock;
- lock.lock();
- try {
- final Generation g = generation;
- if (g.broken)
- throw new BrokenBarrierException();
- if (Thread.interrupted()) {
- breakBarrier();
- throw new InterruptedException();
- }
- int index = --count;
- if (index == 0) { // tripped
- boolean ranAction = false;
- try {
- final Runnable command = barrierCommand;
- if (command != null)
- command.run();
- ranAction = true;
- nextGeneration();
- return 0;
- } finally {
- if (!ranAction)
- breakBarrier();
- }
- }
- // loop until tripped, broken, interrupted, or timed out
- for (;;) {
- try {
- if (!timed)
- trip.await();
- else if (nanos > 0L)
- nanos = trip.awaitNanos(nanos);
- } catch (InterruptedException ie) {
- if (g == generation && ! g.broken) {
- breakBarrier();
- throw ie;
- } else {
- // We're about to finish waiting even if we had not
- // been interrupted, so this interrupt is deemed to
- // "belong" to subsequent execution.
- Thread.currentThread().interrupt();
- }
- }
- if (g.broken)
- throw new BrokenBarrierException();
- if (g != generation)
- return index;
- if (timed && nanos <= 0L) {
- breakBarrier();
- throw new TimeoutException();
- }
- }
- } finally {
- lock.unlock();
- }
- }
- /**
- * Creates a new <tt>CyclicBarrier</tt> that will trip when the
- * given number of parties (threads) are waiting upon it, and which
- * will execute the given barrier action when the barrier is tripped,
- * performed by the last thread entering the barrier.
- *
- * @param parties the number of threads that must invoke {@link #await}
- * before the barrier is tripped
- * @param barrierAction the command to execute when the barrier is
- * tripped, or {@code null} if there is no action
- * @throws IllegalArgumentException if {@code parties} is less than 1
- */
- public CyclicBarrier(int parties, Runnable barrierAction) {
- if (parties <= 0) throw new IllegalArgumentException();
- this.parties = parties;
- this.count = parties;
- this.barrierCommand = barrierAction;
- }
- /**
- * Creates a new <tt>CyclicBarrier</tt> that will trip when the
- * given number of parties (threads) are waiting upon it, and
- * does not perform a predefined action when the barrier is tripped.
- *
- * @param parties the number of threads that must invoke {@link #await}
- * before the barrier is tripped
- * @throws IllegalArgumentException if {@code parties} is less than 1
- */
- public CyclicBarrier(int parties) {
- this(parties, null);
- }
- /**
- * Returns the number of parties required to trip this barrier.
- *
- * @return the number of parties required to trip this barrier
- */
- public int getParties() {
- return parties;
- }
- /**
- * Waits until all {@linkplain #getParties parties} have invoked
- * <tt>await</tt> on this barrier.
- *
- * <p>If the current thread is not the last to arrive then it is
- * disabled for thread scheduling purposes and lies dormant until
- * one of the following things happens:
- * [list]
- * <li>The last thread arrives; or
- * <li>Some other thread {@linkplain Thread#interrupt interrupts}
- * the current thread; or
- * <li>Some other thread {@linkplain Thread#interrupt interrupts}
- * one of the other waiting threads; or
- * <li>Some other thread times out while waiting for barrier; or
- * <li>Some other thread invokes {@link #reset} on this barrier.
- * [/list]
- *
- * <p>If the current thread:
- * [list]
- * <li>has its interrupted status set on entry to this method; or
- * <li>is {@linkplain Thread#interrupt interrupted} while waiting
- * [/list]
- * then {@link InterruptedException} is thrown and the current thread's
- * interrupted status is cleared.
- *
- * <p>If the barrier is {@link #reset} while any thread is waiting,
- * or if the barrier {@linkplain #isBroken is broken} when
- * <tt>await</tt> is invoked, or while any thread is waiting, then
- * {@link BrokenBarrierException} is thrown.
- *
- * <p>If any thread is {@linkplain Thread#interrupt interrupted} while waiting,
- * then all other waiting threads will throw
- * {@link BrokenBarrierException} and the barrier is placed in the broken
- * state.
- *
- * <p>If the current thread is the last thread to arrive, and a
- * non-null barrier action was supplied in the constructor, then the
- * current thread runs the action before allowing the other threads to
- * continue.
- * If an exception occurs during the barrier action then that exception
- * will be propagated in the current thread and the barrier is placed in
- * the broken state.
- *
- * @return the arrival index of the current thread, where index
- * <tt>{@link #getParties()} - 1</tt> indicates the first
- * to arrive and zero indicates the last to arrive
- * @throws InterruptedException if the current thread was interrupted
- * while waiting
- * @throws BrokenBarrierException if [i]another[/i] thread was
- * interrupted or timed out while the current thread was
- * waiting, or the barrier was reset, or the barrier was
- * broken when {@code await} was called, or the barrier
- * action (if present) failed due an exception.
- */
- public int await() throws InterruptedException, BrokenBarrierException {
- try {
- return dowait(false, 0L);
- } catch (TimeoutException toe) {
- throw new Error(toe); // cannot happen;
- }
- }
- /**
- * Waits until all {@linkplain #getParties parties} have invoked
- * <tt>await</tt> on this barrier, or the specified waiting time elapses.
- *
- * <p>If the current thread is not the last to arrive then it is
- * disabled for thread scheduling purposes and lies dormant until
- * one of the following things happens:
- * [list]
- * <li>The last thread arrives; or
- * <li>The specified timeout elapses; or
- * <li>Some other thread {@linkplain Thread#interrupt interrupts}
- * the current thread; or
- * <li>Some other thread {@linkplain Thread#interrupt interrupts}
- * one of the other waiting threads; or
- * <li>Some other thread times out while waiting for barrier; or
- * <li>Some other thread invokes {@link #reset} on this barrier.
- * [/list]
- *
- * <p>If the current thread:
- * [list]
- * <li>has its interrupted status set on entry to this method; or
- * <li>is {@linkplain Thread#interrupt interrupted} while waiting
- * [/list]
- * then {@link InterruptedException} is thrown and the current thread's
- * interrupted status is cleared.
- *
- * <p>If the specified waiting time elapses then {@link TimeoutException}
- * is thrown. If the time is less than or equal to zero, the
- * method will not wait at all.
- *
- * <p>If the barrier is {@link #reset} while any thread is waiting,
- * or if the barrier {@linkplain #isBroken is broken} when
- * <tt>await</tt> is invoked, or while any thread is waiting, then
- * {@link BrokenBarrierException} is thrown.
- *
- * <p>If any thread is {@linkplain Thread#interrupt interrupted} while
- * waiting, then all other waiting threads will throw {@link
- * BrokenBarrierException} and the barrier is placed in the broken
- * state.
- *
- * <p>If the current thread is the last thread to arrive, and a
- * non-null barrier action was supplied in the constructor, then the
- * current thread runs the action before allowing the other threads to
- * continue.
- * If an exception occurs during the barrier action then that exception
- * will be propagated in the current thread and the barrier is placed in
- * the broken state.
- *
- * @param timeout the time to wait for the barrier
- * @param unit the time unit of the timeout parameter
- * @return the arrival index of the current thread, where index
- * <tt>{@link #getParties()} - 1</tt> indicates the first
- * to arrive and zero indicates the last to arrive
- * @throws InterruptedException if the current thread was interrupted
- * while waiting
- * @throws TimeoutException if the specified timeout elapses
- * @throws BrokenBarrierException if [i]another[/i] thread was
- * interrupted or timed out while the current thread was
- * waiting, or the barrier was reset, or the barrier was broken
- * when {@code await} was called, or the barrier action (if
- * present) failed due an exception
- */
- public int await(long timeout, TimeUnit unit)
- throws InterruptedException,
- BrokenBarrierException,
- TimeoutException {
- return dowait(true, unit.toNanos(timeout));
- }
- /**
- * Queries if this barrier is in a broken state.
- *
- * @return {@code true} if one or more parties broke out of this
- * barrier due to interruption or timeout since
- * construction or the last reset, or a barrier action
- * failed due to an exception; {@code false} otherwise.
- */
- public boolean isBroken() {
- final ReentrantLock lock = this.lock;
- lock.lock();
- try {
- return generation.broken;
- } finally {
- lock.unlock();
- }
- }
- /**
- * Resets the barrier to its initial state. If any parties are
- * currently waiting at the barrier, they will return with a
- * {@link BrokenBarrierException}. Note that resets [i]after[/i]
- * a breakage has occurred for other reasons can be complicated to
- * carry out; threads need to re-synchronize in some other way,
- * and choose one to perform the reset. It may be preferable to
- * instead create a new barrier for subsequent use.
- */
- public void reset() {
- final ReentrantLock lock = this.lock;
- lock.lock();
- try {
- breakBarrier(); // break the current generation
- nextGeneration(); // start a new generation
- } finally {
- lock.unlock();
- }
- }
- /**
- * Returns the number of parties currently waiting at the barrier.
- * This method is primarily useful for debugging and assertions.
- *
- * @return the number of parties currently blocked in {@link #await}
- */
- public int getNumberWaiting() {
- final ReentrantLock lock = this.lock;
- lock.lock();
- try {
- return parties - count;
- } finally {
- lock.unlock();
- }
- }
- }
2. CyclicBarrier工具类的使用案例
CyclicBarrier可以让所有线程都处于等待状态(阻塞),然后在满足条件的情况下继续执行。打个比方: 几个小组包一辆车去旅游,一天行程包括上午小组自由活动和下午自由活动:各个小组早上自由活动,但是11点半大巴车上集合,然后吃饭并赶赴下一个景区。
各个小组下午自由活动,但是要5点半大巴车上集合,然后一起回去。
- package my.concurrent.cyclicbarrier;
- import java.util.concurrent.BrokenBarrierException;
- import java.util.concurrent.CyclicBarrier;
- public class TeamGroup implements Runnable {
- private final CyclicBarrier barrier;
- private int groupNumber;
- /**
- * @param barrier
- * @param groupNumber
- */
- public TeamGroup(CyclicBarrier barrier, int groupNumber) {
- this.barrier = barrier;
- this.groupNumber = groupNumber;
- }
- public void run() {
- try {
- print();
- barrier.await();
- } catch (InterruptedException e) {
- // TODO Auto-generated catch block
- e.printStackTrace();
- } catch (BrokenBarrierException e) {
- // TODO Auto-generated catch block
- e.printStackTrace();
- }
- }
- private void print() {
- System.out.println(String.format("第%d组完成该地景点浏览,并回到集合点", groupNumber));
- }
- }
- package my.concurrent.cyclicbarrier;
- import java.util.concurrent.CyclicBarrier;
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
- public class CyclicBarrierTest {
- private static final int THREAD_SLEEP_MILLIS = 6000;
- /** 旅游小数的个数 */
- private static final int NUMBER_OF_GROUPS = 6;
- /** 观光是否结束的标识 */
- private static boolean tourOver = false;
- public static void main(String[] args) {
- ExecutorService service = Executors
- .newFixedThreadPool(NUMBER_OF_GROUPS);
- CyclicBarrier cb = new CyclicBarrier(NUMBER_OF_GROUPS, new Runnable() {
- public void run() {
- /*
- * 如果一天的游玩结束了,大家可以坐大巴回去了... ...
- */
- if (isTourOver()) {
- System.out.println("各个小组都集合到大巴上,准备回家.. ...");
- }
- }
- });
- System.out.println("用CyclicBarrier辅助工具类模拟旅游过程中小组集合::");
- /*
- * 上午各个小组自由活动,然后在某个点,比如11点半集合到大巴上。
- */
- tourInTheMorning(service, cb);
- sleep(THREAD_SLEEP_MILLIS);
- /*
- * 调用reset方法,将barrier设置到初始化状态。
- *
- * TODO://不知道这样的调用是否是合理的?
- */
- cb.reset();
- /*
- * 下午各个小组自由活动,然后在某个点,比如11点半集合到大巴上。
- */
- tourInTheAfternoon(service, cb);
- /*
- * 下午小组集合完毕后,一天的观光就结束了,将标志位记为true;
- */
- tourOver = true;
- sleep(THREAD_SLEEP_MILLIS);
- service.shutdown();
- }
- /**
- * @return the tourOver
- */
- public static boolean isTourOver() {
- return tourOver;
- }
- /**
- * @param tourOver
- * the tourOver to set
- */
- public static void setTourOver(boolean tourOver) {
- CyclicBarrierTest.tourOver = tourOver;
- }
- private static void tourInTheMorning(ExecutorService service,
- final CyclicBarrier cb) {
- System.out.println("早上自由玩... ... ");
- for (int groupNumber = 1; groupNumber <= NUMBER_OF_GROUPS; groupNumber++) {
- service.execute(new TeamGroup(cb, groupNumber));
- }
- }
- private static void tourInTheAfternoon(ExecutorService service,
- final CyclicBarrier cb) {
- System.out.println("下午自由玩... ... ");
- for (int groupNumber = 1; groupNumber <= NUMBER_OF_GROUPS; groupNumber++) {
- service.execute(new TeamGroup(cb, groupNumber));
- }
- }
- private static void sleep(long millis) {
- try {
- Thread.sleep(millis);
- } catch (InterruptedException e) {
- // TODO Auto-generated catch block
- e.printStackTrace();
- }
- }
- }
某一次运行的结果如下:
用CyclicBarrier辅助工具类模拟旅游过程中小组集合::
早上自由玩... ...
第1组完成该地景点浏览,并回到集合点
第6组完成该地景点浏览,并回到集合点
第2组完成该地景点浏览,并回到集合点
第5组完成该地景点浏览,并回到集合点
第4组完成该地景点浏览,并回到集合点
第3组完成该地景点浏览,并回到集合点
下午自由玩... ...
第1组完成该地景点浏览,并回到集合点
第3组完成该地景点浏览,并回到集合点
第4组完成该地景点浏览,并回到集合点
第5组完成该地景点浏览,并回到集合点
第6组完成该地景点浏览,并回到集合点
第2组完成该地景点浏览,并回到集合点
各个小组都集合到大巴上,准备回家.. ...
3. CyclicBarrier vs. CountDownLatch
相同点:
两者都是用于线程同步的辅助工具类,都提供了await方法来达到线程等待。
不同点:
1. 从类的实现上看:
CountDownLatch通过一个继承AbstractQueuedSynchronizer的内部类Sync来完成同步。
CyclicBarrier通过Condition和Lock来完成同步。
2. 从类的用途上看:
CountDownLatch: 一个或者是一部分线程,等待另外一部线程都完成操作。
CyclicBarrier: 所有线程互相等待完成。
3. 从适合场合来看:
CountDownLatch中计数是不能被重置的。如果需要一个可以重置计数的版本,需要考虑使用CyclicBarrie。
CountDownLatch适用于一次同步。当使用CountDownLatch时,任何线程允许多次调用countDown(). 那些调用了await()方法的线程将被阻塞,直到那些没有被阻塞线程调用countDown()使计数到达0为止。
相反,CyclicBarrier适用于多个同步点。例如:一组正在运算的线程,在进入下一个阶段计算之前需要同步。
与CountDownLatch不同,一个处于某个阶段的线程调用了await()方法将会被阻塞,直到所有属于这个阶段的线程都调用了await()方法为止。
在CyclicBarrier中,如果一个线程由于中断,失败或者超时等原因,过早地离开了栅栏点,那么所有在栅栏点等待的其它线程也会通过BrokenBarrierException或者IterupedException异常地离开。
4. 从关注点上来看: 使用CountDownLatch时,它关注的一个线程或者多个线程需要在其它在一组线程完成操作之后,在去做一些事情。比如:服务的启动等。CyclicBarrier更加关注的是公共的栅栏点(Common Barrier point),关注的是这个点上的同步。这个点之前之后的事情并不需要太多的关注。比如:一个并行计算需要分几个阶段完成,在一个阶段完成进入到下一个阶段之前,需要同步,这时候CyclicBarrie很适合。
由于知识的原因,上述例子以及CountDownLatch和CyclicBarrier的比较上会存在不足,如果有问题请大家指正,也希望大家能够提供两者其它方面的不同之处,一起学习分享。
相关推荐
KUKA机器人相关资料
内容概要:本文详细介绍了利用Matlab实现模拟退火算法来优化旅行商问题(TSP)。首先阐述了TSP的基本概念及其在路径规划、物流配送等领域的重要性和挑战。接着深入讲解了模拟退火算法的工作原理,包括高温状态下随机探索、逐步降温过程中选择较优解或以一定概率接受较差解的过程。随后展示了具体的Matlab代码实现步骤,涵盖城市坐标的定义、路径长度的计算方法、模拟退火主循环的设计等方面。并通过多个实例演示了不同参数配置下的优化效果,强调了参数调优的重要性。最后讨论了该算法的实际应用场景,如物流配送路线优化,并提供了实用技巧和注意事项。 适合人群:对路径规划、物流配送优化感兴趣的科研人员、工程师及高校学生。 使用场景及目标:适用于需要解决复杂路径规划问题的场合,特别是涉及多个节点间最优路径选择的情况。通过本算法可以有效地减少路径长度,提高配送效率,降低成本。 其他说明:文中不仅给出了完整的Matlab代码,还包括了一些优化建议和技术细节,帮助读者更好地理解和应用这一算法。此外,还提到了一些常见的陷阱和解决方案,有助于初学者避开常见错误。
内容概要:本文详细介绍了如何利用Simulink进行自动代码生成,在STM32平台上实现带57次谐波抑制功能的霍尔场定向控制(FOC)。首先,文章讲解了所需的软件环境准备,包括MATLAB/Simulink及其硬件支持包的安装。接着,阐述了构建永磁同步电机(PMSM)霍尔FOC控制模型的具体步骤,涵盖电机模型、坐标变换模块(如Clark和Park变换)、PI调节器、SVPWM模块以及用于抑制特定谐波的陷波器的设计。随后,描述了硬件目标配置、代码生成过程中的注意事项,以及生成后的C代码结构。此外,还讨论了霍尔传感器的位置估算、谐波补偿器的实现细节、ADC配置技巧、PWM死区时间和换相逻辑的优化。最后,分享了一些实用的工程集成经验,并推荐了几篇有助于深入了解相关技术和优化控制效果的研究论文。 适合人群:从事电机控制系统开发的技术人员,尤其是那些希望掌握基于Simulink的自动代码生成技术,以提高开发效率和控制精度的专业人士。 使用场景及目标:适用于需要精确控制永磁同步电机的应用场合,特别是在面对高次谐波干扰导致的电流波形失真问题时。通过采用文中提供的解决方案,可以显著改善系统的稳定性和性能,降低噪声水平,提升用户体验。 其他说明:文中不仅提供了详细的理论解释和技术指导,还包括了许多实践经验教训,如霍尔传感器处理、谐波抑制策略的选择、代码生成配置等方面的实际案例。这对于初学者来说是非常宝贵的参考资料。
内容概要:本文详细介绍了基于西门子S7-200 PLC和组态王的机械手搬运控制系统的实现方案。首先,文章展示了梯形图程序的关键逻辑,如急停连锁保护、水平移动互锁以及定时器的应用。接着,详细解释了IO分配的具体配置,包括数字输入、数字输出和模拟量接口的功能划分。此外,还讨论了接线图的设计注意事项,强调了电磁阀供电和继电器隔离的重要性。组态王的画面设计部分涵盖了三层画面结构(总览页、参数页、调试页)及其动画脚本的编写。最后,分享了调试过程中遇到的问题及解决方案,如传感器抖动、输出互锁设计等。 适合人群:从事自动化控制领域的工程师和技术人员,尤其是对PLC编程和组态软件有一定基础的读者。 使用场景及目标:适用于自动化生产线中机械手搬运控制系统的开发与调试。目标是帮助读者掌握从硬件接线到软件逻辑的完整实现过程,提高系统的稳定性和可靠性。 其他说明:文中提供了大量实践经验,包括常见的错误和解决方案,有助于读者在实际工作中少走弯路。
内容概要:本文详细介绍了基于西门子1200PLC的污水处理项目,涵盖了PLC程序结构、通信配置、HMI设计以及CAD原理图等多个方面。PLC程序采用梯形图和SCL语言相结合的方式,实现了复杂的控制逻辑,如水位控制、曝气量模糊控制等。通讯配置采用了Modbus TCP和Profinet双协议,确保了设备间高效稳定的通信。HMI设计则注重用户体验,提供了详细的报警记录和趋势图展示。此外,CAD图纸详尽标注了设备位号,便于后期维护。操作说明书中包含了应急操作流程和定期维护建议,确保系统的长期稳定运行。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是对PLC编程、HMI设计和通信配置感兴趣的从业者。 使用场景及目标:适用于污水处理厂及其他类似工业控制系统的设计、实施和维护。目标是帮助工程师掌握完整的项目开发流程,提高系统的可靠性和效率。 其他说明:文中提供的具体代码片段和设计思路对于理解和解决实际问题非常有价值,建议读者结合实际项目进行深入学习和实践。
内容概要:本文详细介绍了基于5电平三相模块化多电平变流器(MMC)的虚拟同步发电机(VSG)控制系统的构建与仿真。首先,文章描述了MMC的基本结构和参数设置,包括子模块电容电压均衡策略和载波移相策略。接着,深入探讨了VSG控制算法的设计,特别是有功-频率和无功-电压下垂控制的具体实现方法。文中还展示了通过MATLAB-Simulink进行仿真的具体步骤,包括设置理想的直流电源和可编程三相源来模拟电网扰动。仿真结果显示,VSG控制系统能够在面对频率和电压扰动时迅速恢复稳定,表现出良好的调频调压性能。 适合人群:从事电力电子、电力系统自动化及相关领域的研究人员和技术人员。 使用场景及目标:适用于研究和开发新型电力电子设备,特别是在新能源接入电网时提高系统的稳定性。目标是通过仿真验证VSG控制的有效性,为实际应用提供理论支持和技术指导。 其他说明:文章提供了详细的代码片段和仿真配置,帮助读者更好地理解和重现实验结果。此外,还提到了一些常见的调试技巧和注意事项,如选择合适的仿真步长和参数配对调整。
内容概要:本文详细介绍了在一个复杂的工业自动化项目中,如何利用西门子S7-1200 PLC为核心,结合基恩士视觉相机、ABB机器人以及G120变频器等多种设备,构建了一个高效的立体库码垛系统。文中不仅探讨了不同设备之间的通信协议(如Modbus TCP和Profinet),还展示了SCL和梯形图混合编程的具体应用场景和技术细节。例如,通过SCL进行视觉坐标解析、机器人通信心跳维护等功能的实现,而梯形图则用于处理简单的状态切换和安全回路。此外,作者分享了许多实际调试过程中遇到的问题及其解决方案,强调了良好的注释习惯对于提高代码可维护性的关键作用。 适用人群:从事工业自动化领域的工程师和技术人员,尤其是对PLC编程、机器人控制及多种通信协议感兴趣的从业者。 使用场景及目标:适用于需要整合多种工业设备并确保它们能够稳定协作的工作环境。主要目标是在保证系统高精度的同时降低故障率,从而提升生产效率。 其他说明:文中提到的一些具体技术和方法可以作为类似项目的参考指南,帮助开发者更好地理解和应对复杂的工业控制系统挑战。
KUKA机器人相关资料
java脱敏工具类
内容概要:本文详细介绍了基于自抗扰控制(ADRC)的表贴式永磁同步电机(SPMSM)双环控制系统的建模与实现方法。该系统采用速度环一阶ADRC控制和电流环PI控制相结合的方式,旨在提高电机在复杂工况下的稳定性和响应速度。文章首先解释了选择ADRC的原因及其优势,接着展示了ADRC和PI控制器的具体实现代码,并讨论了在Matlab/Simulink环境中搭建模型的方法和注意事项。通过对不同工况下的仿真测试,验证了该控制策略的有效性,特别是在负载突变情况下的优越表现。 适合人群:从事电机控制、自动化控制及相关领域的研究人员和技术人员,尤其是对自抗扰控制感兴趣的工程师。 使用场景及目标:适用于需要高精度、高响应速度的工业伺服系统和其他高性能电机应用场景。目标是提升电机在复杂环境下的稳定性和抗扰能力,减少转速波动和恢复时间。 其他说明:文中提供了详细的代码示例和调试技巧,帮助读者更好地理解和实施该控制策略。同时,强调了在实际应用中需要注意的问题,如参数调整、输出限幅等。
java设计模式之责任链的使用demo
内容概要:本文详细介绍了两相交错并联Buck/Boost变换器的硬件结构和三种控制方式(开环、电压单环、双环)的实现方法及仿真结果。文中首先描述了该变换器的硬件结构特点,即四个MOS管组成的H桥结构,两相电感交错180度工作,从而有效减少电流纹波。接着,针对每种控制方式,具体讲解了其配置步骤、关键参数设置以及仿真过程中需要注意的问题。例如,在开环模式下,通过固定PWM占空比来观察原始波形;电压单环则引入PI控制器进行电压反馈调节;双环控制进一步增加了电流内环,实现了更为精确的电流控制。此外,文章还探讨了单向结构的特点,并提供了仿真技巧和避坑指南。 适合人群:从事电力电子研究的技术人员、高校相关专业师生。 使用场景及目标:适用于希望深入了解两相交错并联Buck/Boost变换器的工作原理和技术细节的研究者,旨在帮助他们掌握不同控制方式的设计思路和仿真方法。 其他说明:文中不仅提供了详细的理论解释,还有丰富的实例代码片段,便于读者理解和实践。同时,作者分享了许多宝贵的实践经验,有助于避免常见的仿真错误。
第二场c++A组
数控磨床编程.ppt
内容概要:本文详细介绍了利用COMSOL软件进行N2和CO2混合气体在热-流-固三场耦合作用下增强煤层气抽采的数值模拟。首先,通过设定煤岩材料参数,如热导率、杨氏模量等,构建了煤岩物理模型。接着,引入达西定律和Maxwell-Stefan扩散方程,建立了混合气体运移方程,考虑了气体膨胀系数和吸附特性。在应力场求解方面,采用自适应步长和阻尼系数调整,确保模型稳定。同时,探讨了温度场与气体运移的耦合机制,特别是在低温条件下CO2注入对煤体裂隙扩展的影响。最后,通过粒子追踪和流线图展示了气体运移路径和抽采效率的变化。 适合人群:从事煤层气开采、数值模拟以及相关领域的科研人员和技术工程师。 使用场景及目标:适用于需要优化煤层气抽采工艺的研究机构和企业,旨在通过数值模拟提高抽采效率并减少环境影响。 其他说明:文中提供了详细的MATLAB和COMSOL代码片段,帮助读者理解和复现模型。此外,强调了模型参数选择和求解器配置的重要性,分享了作者的实际经验和常见问题解决方法。
基于Bode的引线补偿器设计 计算给定G、相位裕度、交叉频率和安全裕度要求的引线补偿器。 计算给定电厂G、PM和Wc要求的铅补偿器,并运行ControlSystemDesigner进行验证。
KUKA机器人相关文档
包括:源程序工程文件、Proteus仿真工程文件、配套技术手册等 1、采用51/52单片机作为主控芯片; 2、采用数码管显示计时秒数,单个操作均为20秒; 3、采用继电器控制进水、排水; 4、采用L298驱动电机; 5、具有强洗、标准洗、弱洗、甩干四种模式; 6、强洗流程:进水、三轮洗涤、排水、甩干、进水、漂洗、排水、甩干; 7、标准洗流程:进水、两轮洗涤、排水、甩干、进水、漂洗、排水、甩干; 8、弱洗流程:进水、一轮洗涤、排水、甩干、进水、漂洗、排水、甩干;
内容概要:本文详细介绍了如何利用MATLAB 2018b搭建微电网并网逆变器模型,采用电压电流双环控制配合SPWM调制技术,实现稳定的并网控制。文中涵盖了PI参数整定、下垂系数计算、SPWM载波生成、PLL改进等多个关键技术环节,并分享了调试经验和常见问题解决方案。通过具体的代码示例展示了各模块的具体实现方法,强调了电流环和电压环的设计要点以及下垂控制的应用。 适合人群:具有一定电力电子和控制系统基础知识的研究人员和技术人员,尤其是从事微电网研究和开发的专业人士。 使用场景及目标:适用于希望深入了解微电网并网控制机制及其具体实现方式的学习者和从业者。主要目标是掌握电压电流双环控制与SPWM调制相结合的方法,理解下垂控制的工作原理,并能够独立完成相关系统的建模与调试。 其他说明:文中提供的代码片段可以直接用于MATLAB/Simulink环境进行实验验证,同时附带了许多宝贵的实践经验,如参数选择、波形分析等,有助于提高实际项目的成功率。此外,还特别提到了一些容易被忽视但至关重要的细节,比如载波频率设置、死区时间和谐波抑制等问题。