`
lxwt909
  • 浏览: 573758 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

Lucene5学习之TermVector项向量

阅读更多

         项向量在Lucene中属于高级话题。利用项向量能实现很多很有意思的功能,比如返回跟当前商品相似的商品。当你需要实现返回与xxxxxxxx类似的东西时,就可以考虑使用项向量,在Lucene中是使用MoreLikeThis来实现。

         项向量其实就是根据Term在文档中出现的频率和文档中包含Term的频率建立的数学模型,计算两个项向量的夹角的方式来判断他们的相似性。而Lucene5中内置的MoreLikeThis的实现方式却是使用打分的方式计算相似度,根据最终得分高低放入优先级队列,评分高的自然在队列最高处。

/**
   * Create a PriorityQueue from a word->tf map.
   *
   * @param words a map of words keyed on the word(String) with Int objects as the values.
   */
  private PriorityQueue<ScoreTerm> createQueue(Map<String, Int> words) throws IOException {
    // have collected all words in doc and their freqs
    int numDocs = ir.numDocs();
    final int limit = Math.min(maxQueryTerms, words.size());
    FreqQ queue = new FreqQ(limit); // will order words by score

    for (String word : words.keySet()) { // for every word
      int tf = words.get(word).x; // term freq in the source doc
      if (minTermFreq > 0 && tf < minTermFreq) {
        continue; // filter out words that don't occur enough times in the source
      }

      // go through all the fields and find the largest document frequency
      String topField = fieldNames[0];
      int docFreq = 0;
      for (String fieldName : fieldNames) {
        int freq = ir.docFreq(new Term(fieldName, word));
        topField = (freq > docFreq) ? fieldName : topField;
        docFreq = (freq > docFreq) ? freq : docFreq;
      }

      if (minDocFreq > 0 && docFreq < minDocFreq) {
        continue; // filter out words that don't occur in enough docs
      }

      if (docFreq > maxDocFreq) {
        continue; // filter out words that occur in too many docs
      }

      if (docFreq == 0) {
        continue; // index update problem?
      }

      float idf = similarity.idf(docFreq, numDocs);
      float score = tf * idf;

      if (queue.size() < limit) {
        // there is still space in the queue
        queue.add(new ScoreTerm(word, topField, score, idf, docFreq, tf));
      } else {
        ScoreTerm term = queue.top();
        if (term.score < score) { // update the smallest in the queue in place and update the queue.
          term.update(word, topField, score, idf, docFreq, tf);
          queue.updateTop();
        }
      }
    }
    return queue;
  }

    其实就是通过similarity来计算IDF-TF从而计算得分。

 

    Lucene5中获取项向量的方法:

    1.根据document   id获取

reader.getTermVectors(docID);

    2.根据document id 和 FieldName

Terms termFreqVector = reader.getTermVector(i, "subject");

    

    下面是一个有关Lucene5中TermVector项向量操作的示例代码:

    

package com.yida.framework.lucene5.termvector;

import java.io.IOException;
import java.nio.file.Paths;

import org.apache.lucene.document.Document;
import org.apache.lucene.index.DirectoryReader;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.Terms;
import org.apache.lucene.index.TermsEnum;
import org.apache.lucene.search.BooleanClause;
import org.apache.lucene.search.BooleanClause.Occur;
import org.apache.lucene.search.BooleanQuery;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.TermQuery;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.CharsRefBuilder;
/**
 * 查找类似书籍-测试
 * @author Lanxiaowei
 *
 */
public class BookLikeThis {
	public static void main(String[] args) throws IOException {
		String indexDir = "C:/lucenedir";
		Directory directory = FSDirectory.open(Paths.get(indexDir));
		IndexReader reader = DirectoryReader.open(directory);
		IndexSearcher searcher = new IndexSearcher(reader);
		// 最大的索引文档ID
		int numDocs = reader.maxDoc();

		BookLikeThis blt = new BookLikeThis();
		for (int i = 0; i < numDocs; i++) {
			System.out.println();
			Document doc = reader.document(i);
			System.out.println(doc.get("title"));

			Document[] docs = blt.docsLike(reader, searcher, i, 10);
			if (docs.length == 0) {
				System.out.println("  -> Sorry,None like this");
			}
			for (Document likeThisDoc : docs) {
				System.out.println("  -> " + likeThisDoc.get("title"));
			}
		}
		reader.close();
		directory.close();
	}

	public Document[] docsLike(IndexReader reader, IndexSearcher searcher,
			int id, int max) throws IOException {
		//根据文档id加载文档对象
		Document doc = reader.document(id);
		//获取所有的作者
		String[] authors = doc.getValues("author");
		BooleanQuery authorQuery = new BooleanQuery();
		//遍历所有的作者
		for (String author : authors) {
			//包含所有作者的书籍
			authorQuery.add(new TermQuery(new Term("author", author)),Occur.SHOULD);
		}
		//authorQuery权重乘以2
		authorQuery.setBoost(2.0f);

		//获取subject域的项向量
		Terms vector = reader.getTermVector(id, "subject");
		TermsEnum termsEnum = vector.iterator(null);
		CharsRefBuilder spare = new CharsRefBuilder();
		BytesRef text = null;
		BooleanQuery subjectQuery = new BooleanQuery();
		while ((text = termsEnum.next()) != null) {
			spare.copyUTF8Bytes(text);
			String term = spare.toString();
			//System.out.println("term:" + term);
			// if isNoiseWord
			TermQuery tq = new TermQuery(new Term("subject", term));
			//使用subject域中的项向量构建BooleanQuery
			subjectQuery.add(tq, Occur.SHOULD);
		}

		BooleanQuery likeThisQuery = new BooleanQuery();
		likeThisQuery.add(authorQuery, BooleanClause.Occur.SHOULD);
		likeThisQuery.add(subjectQuery, BooleanClause.Occur.SHOULD);

		//排除自身
		likeThisQuery.add(new TermQuery(new Term("isbn", doc.get("isbn"))),
				BooleanClause.Occur.MUST_NOT);

		TopDocs hits = searcher.search(likeThisQuery, 10);
		int size = max;
		if (max > hits.scoreDocs.length) {
			size = hits.scoreDocs.length;
		}

		Document[] docs = new Document[size];
		for (int i = 0; i < size; i++) {
			docs[i] = reader.document(hits.scoreDocs[i].doc);
		}
		return docs;
	}
}

    通过计算项向量夹角的方式判定相似度的代码示例:

    

package com.yida.framework.lucene5.termvector;

import java.io.IOException;
import java.nio.file.Paths;
import java.util.Iterator;
import java.util.Map;
import java.util.TreeMap;

import org.apache.lucene.document.Document;
import org.apache.lucene.index.DirectoryReader;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.Terms;
import org.apache.lucene.index.TermsEnum;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.CharsRefBuilder;

/**
 * 利用项向量自动书籍分类[项向量夹角越小相似度越高]
 * 
 * @author Lanxiaowei
 * 
 */
public class CategoryTest {
	public static void main(String[] args) throws IOException {
		String indexDir = "C:/lucenedir";
		Directory directory = FSDirectory.open(Paths.get(indexDir));
		IndexReader reader = DirectoryReader.open(directory);
		//IndexSearcher searcher = new IndexSearcher(reader);
		Map<String, Map<String, Integer>> categoryMap = new TreeMap<String, Map<String,Integer>>();
		//构建分类的项向量
		buildCategoryVectors(categoryMap, reader);
		
		getCategory("extreme agile methodology",categoryMap);
		
		getCategory("montessori education philosophy",categoryMap);
		
	}

	/**
	 * 根据项向量自动判断分类[返回项向量夹角最小的即相似度最高的]
	 * 
	 * @param subject
	 * @return
	 */
	private static String getCategory(String subject,
			Map<String, Map<String, Integer>> categoryMap) {
		//将subject按空格分割
		String[] words = subject.split(" ");

		Iterator<String> categoryIterator = categoryMap.keySet().iterator();
		double bestAngle = Double.MAX_VALUE;
		String bestCategory = null;

		while (categoryIterator.hasNext()) {
			String category = categoryIterator.next();

			double angle = computeAngle(categoryMap, words, category);
			// System.out.println(" -> angle = " + angle + " (" +
			// Math.toDegrees(angle) + ")");
			if (angle < bestAngle) {
				bestAngle = angle;
				bestCategory = category;
			}
		}
		System.out.println("The best like:" + bestCategory + "-->" + subject);
		return bestCategory;
	}

	public static void buildCategoryVectors(
			Map<String, Map<String, Integer>> categoryMap, IndexReader reader)
			throws IOException {
		int maxDoc = reader.maxDoc();
		// 遍历所有索引文档
		for (int i = 0; i < maxDoc; i++) {
			Document doc = reader.document(i);
			// 获取category域的值
			String category = doc.get("category");

			Map<String, Integer> vectorMap = categoryMap.get(category);
			if (vectorMap == null) {
				vectorMap = new TreeMap<String, Integer>();
				categoryMap.put(category, vectorMap);
			}
			
			Terms termFreqVector = reader.getTermVector(i, "subject");
			TermsEnum termsEnum = termFreqVector.iterator(null);
			addTermFreqToMap(vectorMap, termsEnum);
		}
	}

	/**
	 * 统计项向量中每个Term出现的document个数,key为Term的值,value为document总个数
	 * 
	 * @param vectorMap
	 * @param termsEnum
	 * @throws IOException
	 */
	private static void addTermFreqToMap(Map<String, Integer> vectorMap,
			TermsEnum termsEnum) throws IOException {
		CharsRefBuilder spare = new CharsRefBuilder();
		BytesRef text = null;
		while ((text = termsEnum.next()) != null) {
			spare.copyUTF8Bytes(text);
			String term = spare.toString();
			int docFreq = termsEnum.docFreq();
			System.out.println("term:" + term + "-->docFreq:" + docFreq);
			// 包含该term就累加document出现频率
			if (vectorMap.containsKey(term)) {
				Integer value = (Integer) vectorMap.get(term);
				vectorMap.put(term, new Integer(value.intValue() + docFreq));
			} else {
				vectorMap.put(term, new Integer(docFreq));
			}
		}
	}

	/**
	 * 计算两个Term项向量的夹角[夹角越小则相似度越大]
	 * 
	 * @param categoryMap
	 * @param words
	 * @param category
	 * @return
	 */
	private static double computeAngle(Map<String, Map<String, Integer>> categoryMap,
			String[] words, String category) {
		Map<String, Integer> vectorMap = categoryMap.get(category);

		int dotProduct = 0;
		int sumOfSquares = 0;
		for (String word : words) {
			int categoryWordFreq = 0;

			if (vectorMap.containsKey(word)) {
				categoryWordFreq = vectorMap.get(word).intValue();
			}

			dotProduct += categoryWordFreq;
			sumOfSquares += categoryWordFreq * categoryWordFreq;
		}

		double denominator = 0.0d;
		if (sumOfSquares == words.length) {
			denominator = sumOfSquares;
		} else {
			denominator = Math.sqrt(sumOfSquares) * Math.sqrt(words.length);
		}

		double ratio = dotProduct / denominator;

		return Math.acos(ratio);
	}
}

    

 

    MoreLikeThis使用示例:

package com.yida.framework.lucene5.termvector;

import java.io.IOException;
import java.nio.file.Paths;

import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.index.DirectoryReader;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.queries.mlt.MoreLikeThis;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;

/**
 * MoreLikeThis[更多与此相似]
 * 
 * @author Lanxiaowei
 * 
 */
public class MoreLikeThisTest {
	public static void main(String[] args) throws IOException {
		String indexDir = "C:/lucenedir";
		Directory directory = FSDirectory.open(Paths.get(indexDir));
		IndexReader reader = DirectoryReader.open(directory);
		IndexSearcher searcher = new IndexSearcher(reader);
		MoreLikeThis moreLikeThis = new MoreLikeThis(reader);
		moreLikeThis.setAnalyzer(new StandardAnalyzer());
		moreLikeThis.setFieldNames(new String[] { "title","author","subject" });
		moreLikeThis.setMinTermFreq(1);
		moreLikeThis.setMinDocFreq(1);
		int docNum = 1;
		Query query = moreLikeThis.like(docNum);
		//System.out.println(query.toString());
		TopDocs topDocs = searcher.search(query, Integer.MAX_VALUE);
		ScoreDoc[] scoreDocs = topDocs.scoreDocs;
		//文档id为1的书
		System.out.println(reader.document(docNum).get("title") + "-->");
		for (ScoreDoc sdoc : scoreDocs) {
			Document doc = reader.document(sdoc.doc);
			
			//找到与文档id为1的书相似的书
			System.out.println("    more like this:  " + doc.get("title"));
		}
	}
}

 

    MoreLikeThisQuery使用示例:

    

package com.yida.framework.lucene5.termvector;

import java.io.IOException;
import java.nio.file.Paths;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.index.DirectoryReader;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.queries.mlt.MoreLikeThis;
import org.apache.lucene.queries.mlt.MoreLikeThisQuery;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;

/**
 * MoreLikeThisQuery测试
 * @author Lanxiaowei
 *
 */
public class MoreLikeThisQueryTest {
	public static void main(String[] args) throws IOException {
		String indexDir = "C:/lucenedir";
		Directory directory = FSDirectory.open(Paths.get(indexDir));
		IndexReader reader = DirectoryReader.open(directory);
		IndexSearcher searcher = new IndexSearcher(reader);
		String[] moreLikeFields = new String[] {"title","author"};
		MoreLikeThisQuery query = new MoreLikeThisQuery("lucene in action", 
			moreLikeFields, new StandardAnalyzer(), "author");
		query.setMinDocFreq(1);
		query.setMinTermFrequency(1);
		//System.out.println(query.toString());
		TopDocs topDocs = searcher.search(query, Integer.MAX_VALUE);
		ScoreDoc[] scoreDocs = topDocs.scoreDocs;
		//文档id为1的书
		//System.out.println(reader.document(docNum).get("title") + "-->");
		for (ScoreDoc sdoc : scoreDocs) {
			Document doc = reader.document(sdoc.doc);
			
			//找到与文档id为1的书相似的书
			System.out.println("    more like this:  " + doc.get("title"));
		}
	}
}

    注意MoreLikeThisQuery需要指定分词器,因为你需要指定likeText(即相似参照物),并对likeText进行分词得到多个Term,然后计算每个Term的IDF-TF最终计算得分。涉及到分词那就需要知道域的类型,比如你还必须指定一个fieldName即域名称,按照这个域的类型来进行分词,其他的参数moreLikeFields表示从哪些域里提取Term计算相似度。你还可以通过setStopWords去除likeText中的停用词。
     最后说一点小技巧,reader.document(docId)根据docid可以加载索引文档对象,这个你们都知道,但它还有一个重载方法得引起你们的重视:

后面的Set集合表示你需要返回那些域值,不指定默认是返回所有Store.YES的域,这样做的好处就是减少内存占用,比如你确定某些域的值在你本次查询中你不需要返回给用户展示,那你可以在Set中不包含该域,就好比SQL里的select * from table 和 select id,name from table。

      上面介绍了通过计算向量夹角和IDF-TF打分两种方式来计算相似度,你也可以实现自己的相似度算法,这个就超出了Lucene范畴了,那是算法设计问题了,好的算法决定了匹配的精准度。

      

      如果你还有什么问题请加我Q-Q:7-3-6-0-3-1-3-0-5,

或者加裙
一起交流学习!

 

  • 大小: 181 KB
1
0
分享到:
评论

相关推荐

    Lucene原理

    - **文档向量(Document Vector)**:将每个文档表示为词项的集合,每个词项对应一个权重,权重通常由词频(Term Frequency, TF)和逆文档频率(Inverted Document Frequency, IDF)计算得出。 2. **倒排索引...

    Lucene_3.0_原理与代码分析

    4. **Term Vector Files(词条向量文件)**:提供了关于每个词条在文档中出现位置的信息,这对于某些高级功能(如相关性反馈)非常重要。 5. **Compound File(复合文件)**:将多个索引文件合并成一个大文件,以...

    luke lucene索引查看

    6. **Term Vector查看**:Luke可以显示文档的词项向量(Term Vectors),这包含每个词项的位置、频率和偏移量信息,对于理解TF-IDF算法和其他相关性计算很有价值。 7. **倒排索引查看**:Luke允许用户查看倒排索引...

    vsm向量空间模型java实现(源码)

    **向量空间模型(Vector Space Model,VSM)** 向量空间模型是信息检索和自然语言处理领域中的一种重要概念,它将文档和查询表示为高维空间中的向量,从而进行相似度计算。在VSM中,每个文档或查询被视为一个由词项...

    Lucene0之结果排序.pdf

    1. **协调因子**:衡量文档中查询Term出现的百分比,表示查询中Term的种类和文档中出现的数量之和的比率。出现的Term种类越多,得分越高。 2. **调节因子**:仅在检索时使用,用于在不同查询条件下比较排序结果,...

    lukeall-4.6.0.jar luke工具 lucene查看索引库工具

    5. **Term Vector查看**:Luke可以显示文档的词项向量(Term Vectors),这在进行相关性分析和查询优化时很有帮助。 6. **多语言支持**:随着Lucene对多种语言的支持,Luke也能够处理不同语言的索引,提供相应的...

    Lucene 原理与代码分析.pdf

    评分算法中使用的一个重要数学模型是向量空间模型(Vector Space Model,VSM),它根据词项的权重和文档间的相似度进行计算,影响着最终的搜索结果。 总体而言,该文档为读者提供了一个关于Lucene深入学习的通道。...

    Annotated Lucene 中文版 Lucene源码剖析

    - **TermVectorsTermsWriterPerField.newTerm()/addTerm()**:如果启用了term vector,则将词汇位置信息也写入索引中。 #### 索引存储 - **数据存储类Directory**: - `org.apache.lucene.store.Directory`接口...

    lucene学习资料

    - **词向量(TermVector)的数据信息**(.tvx,.tvd,.tvf):记录了每个词在文档中的位置信息。 **2. 反向信息**:包括词典、文档号及词频等信息。 - **词典(tis)及词典索引(tii)信息**:记录了所有不同词的列表...

    Lucene 原理与代码分析完整版.pdf

    - **词向量(TermVector)的数据信息(.tvx,.tvd,.tvf)**:包含词项在文档中的位置信息。 #### 四、Lucene索引过程分析 创建索引的过程涉及多个阶段: - **创建IndexWriter对象**:这是索引过程的起点,`...

    An Introduction to Information Retrieval 信息检索lucene

    支持向量机(support vector machines)和核函数(kernel functions)是机器学习领域的重要组成部分,它们在信息检索中也有广泛应用。聚类分析(clustering)包括平面聚类(flat clustering)和层次聚类...

    lucene原理分析

    - **termvector**:表示是否保存词向量。 - **positions**:表示是否在词向量中保存位置信息。 - **offset**:表示是否在词向量中保存偏移量。 - **norms**:表示是否保存标准化因子。 - **payload**:表示是否...

    Lucence创建索引

    - **TermVector**:Lucene 1.4.3 版本新增的功能,提供一种向量机制进行模糊查询。 #### 三、Field 构造函数解析 - **构造函数示例**: ```java Field(String name, byte[] value, Field.Store store) Field...

Global site tag (gtag.js) - Google Analytics