sha1 单向hash运算
/*
* A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined
* in FIPS PUB 180-1 Version 2.1a Copyright Paul Johnston 2000 - 2002. Other
* contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet Distributed under the
* BSD License See http://pajhome.org.uk/crypt/md5 for details. Configurable
* variables. You may need to tweak these to be compatible with the server-side,
* but the defaults work in most cases.
*/
var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */
var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */
var chrsz = 8; /* bits per input character. 8 - ASCII; 16 - Unicode */
/*
* These are the functions you'll usually want to call They take string
* arguments and return either hex or base-64 encoded strings
*/
function hex_sha1(s) {
return binb2hex(core_sha1(str2binb(s), s.length * chrsz));
}
function b64_sha1(s) {
return binb2b64(core_sha1(str2binb(s), s.length * chrsz));
}
function str_sha1(s) {
return binb2str(core_sha1(str2binb(s), s.length * chrsz));
}
function hex_hmac_sha1(key, data) {
return binb2hex(core_hmac_sha1(key, data));
}
function b64_hmac_sha1(key, data) {
return binb2b64(core_hmac_sha1(key, data));
}
function str_hmac_sha1(key, data) {
return binb2str(core_hmac_sha1(key, data));
}
/*
* Perform a simple self-test to see if the VM is working
*/
function sha1_vm_test() {
return hex_sha1("abc") == "a9993e364706816aba3e25717850c26c9cd0d89d";
}
/*
* Calculate the SHA-1 of an array of big-endian words, and a bit length
*/
function core_sha1(x, len) {
/* append padding */
x[len >> 5] |= 0x80 << (24 - len % 32);
x[((len + 64 >> 9) << 4) + 15] = len;
var w = Array(80);
var a = 1732584193;
var b = -271733879;
var c = -1732584194;
var d = 271733878;
var e = -1009589776;
for ( var i = 0; i < x.length; i += 16) {
var olda = a;
var oldb = b;
var oldc = c;
var oldd = d;
var olde = e;
for ( var j = 0; j < 80; j++) {
if (j < 16)
w[j] = x[i + j];
else
w[j] = rol(w[j - 3] ^ w[j - 8] ^ w[j - 14] ^ w[j - 16], 1);
var t = safe_add(safe_add(rol(a, 5), sha1_ft(j, b, c, d)),
safe_add(safe_add(e, w[j]), sha1_kt(j)));
e = d;
d = c;
c = rol(b, 30);
b = a;
a = t;
}
a = safe_add(a, olda);
b = safe_add(b, oldb);
c = safe_add(c, oldc);
d = safe_add(d, oldd);
e = safe_add(e, olde);
}
return Array(a, b, c, d, e);
}
/*
* Perform the appropriate triplet combination function for the current
* iteration
*/
function sha1_ft(t, b, c, d) {
if (t < 20)
return (b & c) | ((~b) & d);
if (t < 40)
return b ^ c ^ d;
if (t < 60)
return (b & c) | (b & d) | (c & d);
return b ^ c ^ d;
}
/*
* Determine the appropriate additive constant for the current iteration
*/
function sha1_kt(t) {
return (t < 20) ? 1518500249 : (t < 40) ? 1859775393
: (t < 60) ? -1894007588 : -899497514;
}
/*
* Calculate the HMAC-SHA1 of a key and some data
*/
function core_hmac_sha1(key, data) {
var bkey = str2binb(key);
if (bkey.length > 16)
bkey = core_sha1(bkey, key.length * chrsz);
var ipad = Array(16), opad = Array(16);
for ( var i = 0; i < 16; i++) {
ipad[i] = bkey[i] ^ 0x36363636;
opad[i] = bkey[i] ^ 0x5C5C5C5C;
}
var hash = core_sha1(ipad.concat(str2binb(data)), 512 + data.length * chrsz);
return core_sha1(opad.concat(hash), 512 + 160);
}
/*
* Add integers, wrapping at 2^32. This uses 16-bit operations internally to
* work around bugs in some JS interpreters.
*/
function safe_add(x, y) {
var lsw = (x & 0xFFFF) + (y & 0xFFFF);
var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
return (msw << 16) | (lsw & 0xFFFF);
}
/*
* Bitwise rotate a 32-bit number to the left.
*/
function rol(num, cnt) {
return (num << cnt) | (num >>> (32 - cnt));
}
/*
* Convert an 8-bit or 16-bit string to an array of big-endian words In 8-bit
* function, characters >255 have their hi-byte silently ignored.
*/
function str2binb(str) {
var bin = Array();
var mask = (1 << chrsz) - 1;
for ( var i = 0; i < str.length * chrsz; i += chrsz)
bin[i >> 5] |= (str.charCodeAt(i / chrsz) & mask) << (32 - chrsz - i % 32);
return bin;
}
/*
* Convert an array of big-endian words to a string
*/
function binb2str(bin) {
var str = "";
var mask = (1 << chrsz) - 1;
for ( var i = 0; i < bin.length * 32; i += chrsz)
str += String.fromCharCode((bin[i >> 5] >>> (32 - chrsz - i % 32))
& mask);
return str;
}
/*
* Convert an array of big-endian words to a hex string.
*/
function binb2hex(binarray) {
var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
var str = "";
for ( var i = 0; i < binarray.length * 4; i++) {
str += hex_tab
.charAt((binarray[i >> 2] >> ((3 - i % 4) * 8 + 4)) & 0xF)
+ hex_tab.charAt((binarray[i >> 2] >> ((3 - i % 4) * 8)) & 0xF);
}
return str;
}
/*
* Convert an array of big-endian words to a base-64 string
*/
function binb2b64(binarray) {
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var str = "";
for ( var i = 0; i < binarray.length * 4; i += 3) {
var triplet = (((binarray[i >> 2] >> 8 * (3 - i % 4)) & 0xFF) << 16)
| (((binarray[i + 1 >> 2] >> 8 * (3 - (i + 1) % 4)) & 0xFF) << 8)
| ((binarray[i + 2 >> 2] >> 8 * (3 - (i + 2) % 4)) & 0xFF);
for ( var j = 0; j < 4; j++) {
if (i * 8 + j * 6 > binarray.length * 32)
str += b64pad;
else
str += tab.charAt((triplet >> 6 * (3 - j)) & 0x3F);
}
}
return str;
}
////////////////// test /////////////////////
function test() {
var sha = hex_sha1("abc");
var value = 'a9993e364706816aba3e25717850c26c9cd0d89d';
alert('sha("abc")= ' + sha + ' 验证:' + (sha == value));
}
分享到:
相关推荐
sha-1的javascript实现,html中需要包含sha1.js <script type="text/javascript" src="sha1.js"></script>
JavaScript(简称JS)是一种广泛用于Web开发的轻量级脚本语言,而SHA-1是一种常用的密码散列函数,能够将任意长度的信息映射为固定长度的摘要值。本资料"JS-SHA1.rar"主要关注如何在Java和JavaScript环境中实现SHA-1...
这两个JavaScript文件"md5.js"和"sha1.js"就是为了实现这些加密功能而编写的。 MD5是一种广泛使用的哈希函数,可以将任意长度的数据转换为固定长度的摘要,通常为32位的十六进制字符串。在微信支付中,MD5常用于...
标题中的"sha-1.zip_SHA_sha javascript_sha-1"表明这是一个使用JavaScript实现的SHA-1散列函数,可能被封装在一个ZIP压缩包中。SHA-1是一种广泛使用的密码学散列函数,它能够将任意长度的数据转化为固定长度的摘要...
总结起来,`sha1.js`和`sha1-2.2alpha.js`是JavaScript实现的SHA1加密库,提供了一种方便的方式来处理SHA1哈希。尽管SHA1的安全性相比现代哈希函数有所下降,但在许多旧系统和项目中仍然广泛使用。在使用这些库时,...
本篇文章将详细阐述如何使用JavaScript语言实现SHA-256加密算法。 JavaScript实现SHA-256加密算法的实例主要涉及以下几个关键部分: 1. **位运算基础**:JavaScript提供了位运算符,包括按位与(&)、按位或(|)、...
使用方法: 在<head></head>标签内加入一句 <script type='text/javascript' src='路径名/md5.js'> 然后可以在JS代码中使用 var md5string=hex_md5(value);...var sha1string=hex_sha1(value); 获得加密后的sha1字符串
这个标题表明我们要讨论的是一个JavaScript实现的SHA1哈希算法库,名为"sha1.js"。SHA1是一种广泛使用的安全散列函数,用于生成数据的固定长度摘要,通常用于验证文件完整性、密码存储等领域。在JavaScript中,这个...
<script type="text/javascript" src="js/sha1.js"> var hash = hex_md5(name+" "+password); var date = new Date();//可以传时间,也可以不传,不传的话就是默认的当前时间 var time3 = Date.parse(date); ...
在JavaScript中实现SHA1和MD5加密,可以帮助提升网站或应用程序的安全性。 **MD5(Message-Digest Algorithm 5)** MD5是由Ronald Rivest在1991年设计的,它能将任意长度的信息转化为固定长度的128位(16字节)哈希...
微信支付,微信公众号开发,sha1签名,js实现,有demo介绍使用方法
实现SHA1加密的JavaScript脚本通常会引用一个SHA1库,如`crypto-js`或`js-sha1`。这些库提供了SHA1算法的实现,允许开发者通过几行代码就能完成加密过程。例如,以下是一个使用`crypto-js`库的简单示例: ```html ...
SHA(Secure Hash Algorithm)是一种广泛使用的密码学哈希函数,主要设计用于数字签名和消息认证码。...而"sha1-2.2alpha.js"和"sha1.js"这样的文件则为开发者提供了在JavaScript环境中实现这一功能的工具。
- `sha.js`: 这可能是JavaScript中实现SHA算法的代码,可能与`SHA1.java`类似,但由于JavaScript没有内置的SHA支持,它可能使用了自定义或第三方库。 - `md5-min.js`: 这是`crypto-js`库的压缩版,用于JavaScript...
4. **JavaScript实现**:"hmac-sha1.js"文件可能包含了JavaScript的实现,允许开发者在浏览器端或Node.js环境中对数据进行HMAC-SHA1签名。这通常涉及到使用内置的`crypto`库或第三方库如`crypto-js`。 5. **加密与...
在提供的文件`md5.js`, `sha1.js`, `sha256.js`中,很可能是JavaScript实现的这三个哈希算法的函数。JavaScript作为一个通用的客户端和服务器端编程语言,也可以方便地处理这类计算任务。使用这些函数,无论是直接在...
JavaScript的sha1加密方法代码,可以直接拿来使用,同样适用微信小程序
JavaScript实现SHA-1,输入任意信息,输出固定摘要,并将细节显示出来
在JavaScript中实现MD5和SHA-1加密,开发者可以利用现有的库,如`crypto-js`。首先,你需要通过npm(Node.js包管理器)或直接在HTML中引入CDN链接来获取这个库: ```bash npm install crypto-js ``` 或者在HTML中...
总的来说,了解并掌握MD4、MD5和SHA-1这些基础的哈希算法,以及它们在JavaScript中的实现,对于理解和开发信息安全相关的Web应用至关重要。然而,鉴于它们的安全性问题,开发者应考虑使用更现代的哈希算法,如SHA-...