全文转载:http://pengjiaheng.iteye.com/blog/548472
作者:和你在一起 [from JavaEye]
以下配置主要针对分代垃圾回收算法而言。
堆大小设置
年轻代的设置很关键
JVM中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。在Windows
Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx3550m -Xms3550m -Xmn2g
–Xss128k
-Xmx3550m:
设置JVM最大可用内存为3550M。
-Xms3550m:
设置JVM促使内存为3550m。此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存。
-Xmn2g:
设置年轻代大小为2G。整个堆大小=年轻代大小 + 年老代大小 +
持久代大小。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8。
-Xss128k:
设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为
256K。更具应用的线程所需内存大小进行调整。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无
限生成,经验值在3000~5000左右。
java -Xmx3550m -Xms3550m -Xss128k -XX:NewRatio=4 -XX:SurvivorRatio=4
-XX:MaxPermSize=16m -XX:MaxTenuringThreshold=0
-XX:NewRatio=4
:设置年轻代(包括Eden和两个Survivor区)与年老代的比值(除去持久代)。设置为4,则年轻代与年老代所占比值为1:4,年轻代占整个堆栈的1/5
-XX:SurvivorRatio=4
:设置年轻代中Eden区与Survivor区的大小比值。设置为4,则两个Survivor区与一个Eden区的比值为2:4,一个Survivor区占整个年轻代的1/6
-XX:MaxPermSize=16m:
设置持久代大小为16m。
-XX:MaxTenuringThreshold=0:
设置垃圾最大年龄。如果设置为0的话,则年轻代对象不
经过Survivor区,直接进入年老代。对于年老代比较多的应用,可以提高效率。如果将此值设置为一个较大值,则年轻代对象会在Survivor区进行
多次复制,这样可以增加对象再年轻代的存活时间,增加在年轻代即被回收的概论。
回收器选择
JVM给了三种选择:串行收集器、并行收集器、并发收集器
,但是串行收集器只适用于小数据量的情况,所以这里的选择主要针对并行收集器和并发收集器。默认情况下,JDK5.0以前都是使用串行收集器,如果想使用其他收集器需要在启动时加入相应参数。JDK5.0以后,JVM会根据当前系统配置
进行判断。
吞吐量优先的并行收集器
如上文所述,并行收集器主要以到达一定的吞吐量为目标,适用于科学技术和后台处理等。
典型配置:
java -Xmx3800m -Xms3800m -Xmn2g -Xss128k -XX:+UseParallelGC
-XX:ParallelGCThreads=20
-XX:+UseParallelGC:
选择垃圾收集器为并行收集器。此配置仅对年轻代有效。即上述配置下,年轻代使用并发收集,而年老代仍旧使用串行收集。
-XX:ParallelGCThreads=20:
配置并行收集器的线程数,即:同时多少个线程一起进行垃圾回收。此值最好配置与处理器数目相等。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC
-XX:ParallelGCThreads=20 -XX:+UseParallelOldGC
-XX:+UseParallelOldGC:
配置年老代垃圾收集方式为并行收集。JDK6.0支持对年老代并行收集。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC
-XX:MaxGCPauseMillis=100
-XX:MaxGCPauseMillis=100
:设置每次年轻代垃圾回收的最长时间,如果无法满足此时间,JVM会自动调整年轻代大小,以满足此值。
n java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC
-XX:MaxGCPauseMillis=100 -XX:+UseAdaptiveSizePolicy
-XX:+UseAdaptiveSizePolicy
:设置此选项后,并行收集器会自动选择年轻代区大小和相应的Survivor区比例,以达到目标系统规定的最低相应时间或者收集频率等,此值建议使用并行收集器时,一直打开。
响应时间优先的并发收集器
如上文所述,并发收集器主要是保证系统的响应时间,减少垃圾收集时的停顿时间。适用于应用服务器、电信领域等。
典型配置:
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:ParallelGCThreads=20
-XX:+UseConcMarkSweepGC -XX:+UseParNewGC
-XX:+UseConcMarkSweepGC:
设置年老代为并发收集。测试中配置这个以后,-XX:NewRatio=4的配置失效了,原因不明。所以,此时年轻代大小最好用-Xmn设置。
-XX:+UseParNewGC:
设置年轻代为并行收集。可与CMS收集同时使用。JDK5.0以上,JVM会根据系统配置自行设置,所以无需再设置此值。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseConcMarkSweepGC
-XX:CMSFullGCsBeforeCompaction=5
-XX:+UseCMSCompactAtFullCollection
-XX:CMSFullGCsBeforeCompaction:
由于并发收集器不对内存空间进行压缩、整理,所以运行一段时间以后会产生“碎片”,使得运行效率降低。此值设置运行多少次GC以后对内存空间进行压缩、整理。
-XX:+UseCMSCompactAtFullCollection:
打开对年老代的压缩。可能会影响性能,但是可以消除碎片
辅助信息
JVM提供了大量命令行参数,打印信息,供调试使用。主要有以下一些:
-XX:+PrintGC:
输出形式:[GC
118250K->113543K(130112K), 0.0094143 secs] [Full GC
121376K->10414K(130112K), 0.0650971 secs]
-XX:+PrintGCDetails:
输出形式:[GC
[DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K),
0.0124633 secs] [GC [DefNew: 8614K->8614K(9088K), 0.0000665 secs][Tenured:
112761K->10414K(121024K), 0.0433488 secs] 121376K->10414K(130112K),
0.0436268 secs]
-XX:+PrintGCTimeStamps
-XX:+PrintGC:
PrintGCTimeStamps可与上面两个混合使用
输出形式:11.851: [GC
98328K->93620K(130112K), 0.0082960 secs]
-XX:+PrintGCApplicationConcurrentTime:
打印每次垃圾回收前,程序未中断的执行时间。可与上面混合使用。输出形式:Application
time: 0.5291524 seconds
-XX:+PrintGCApplicationStoppedTime:
打印垃圾回收期间程序暂停的时间。可与上面混合使用。输出形式:Total
time for which application threads were stopped: 0.0468229 seconds
-XX:PrintHeapAtGC:
打印GC前后的详细堆栈信息。输出形式:
34.702: [GC {Heap before gc invocations=7:
def new generation total 55296K, used 52568K [0x1ebd0000, 0x227d0000,
0x227d0000)
eden space 49152K, 99% used [0x1ebd0000, 0x21bce430, 0x21bd0000)
from space 6144K, 55% used [0x221d0000, 0x22527e10, 0x227d0000)
to space 6144K, 0% used [0x21bd0000, 0x21bd0000, 0x221d0000)
tenured generation total 69632K, used 2696K [0x227d0000, 0x26bd0000,
0x26bd0000)
the space 69632K, 3% used [0x227d0000, 0x22a720f8, 0x22a72200,
0x26bd0000)
compacting perm gen total 8192K, used 2898K [0x26bd0000, 0x273d0000,
0x2abd0000)
the space 8192K, 35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00,
0x273d0000)
ro space 8192K, 66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00,
0x2b3d0000)
rw space 12288K, 46% used [0x2b3d0000, 0x2b972060, 0x2b972200,
0x2bfd0000)
34.735: [DefNew: 52568K->3433K(55296K), 0.0072126 secs]
55264K->6615K(124928K)Heap after gc invocations=8:
def new generation total 55296K, used 3433K [0x1ebd0000, 0x227d0000,
0x227d0000)
eden space 49152K, 0% used [0x1ebd0000, 0x1ebd0000, 0x21bd0000)
from space 6144K, 55% used [0x21bd0000, 0x21f2a5e8, 0x221d0000)
to space 6144K, 0% used [0x221d0000, 0x221d0000, 0x227d0000)
tenured generation total 69632K, used 3182K [0x227d0000, 0x26bd0000,
0x26bd0000)
the space 69632K, 4% used [0x227d0000, 0x22aeb958, 0x22aeba00,
0x26bd0000)
compacting perm gen total 8192K, used 2898K [0x26bd0000, 0x273d0000,
0x2abd0000)
the space 8192K, 35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00,
0x273d0000)
ro space 8192K, 66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00,
0x2b3d0000)
rw space 12288K, 46% used [0x2b3d0000, 0x2b972060, 0x2b972200,
0x2bfd0000)
}
, 0.0757599 secs]
-Xloggc:filename:
与上面几个配合使用,把相关日志信息记录到文件以便分析。
常见配置汇总
堆设置
-Xms:
初始堆大小
-Xmx:
最大堆大小
-XX:NewSize=n:
设置年轻代大小
-XX:NewRatio=n:
设置年轻代和年老代的比值。如:为3,表示年轻代与年老代比值为1:3,年轻代占整个年轻代年老代和的1/4
-XX:SurvivorRatio=n:
年轻代中Eden区与两个Survivor区的比值。注意Survivor区有两个。如:3,表示Eden:Survivor=3:2,一个Survivor区占整个年轻代的1/5
-XX:MaxPermSize=n:
设置持久代大小
收集器设置
-XX:+UseSerialGC:
设置串行收集器
-XX:+UseParallelGC:
设置并行收集器
-XX:+UseParalledlOldGC:
设置并行年老代收集器
-XX:+UseConcMarkSweepGC:
设置并发收集器
垃圾回收统计信息
-XX:+PrintGC
-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps
-Xloggc:filename
并行收集器设置
-XX:ParallelGCThreads=n
:设置并行收集器收集时使用的CPU数。并行收集线程数。
-XX:MaxGCPauseMillis=n
:设置并行收集最大暂停时间
-XX:GCTimeRatio=n
:设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)
并发收集器设置
-XX:+CMSIncrementalMode:
设置为增量模式。适用于单CPU情况。
-XX:ParallelGCThreads=n:
设置并发收集器年轻代收集方式为并行收集时,使用的CPU数。并行收集线程数。
调优总结
年轻代大小选择
响应时间优先的应用:
尽可能设大,直到接近系统的最低响应时间限制(根据实际情况选择)。
在此种情况下,年轻代收集发生的频率也是最小的。同时,减少到达年老代的对象。
吞吐量优先的应用:
尽可能的设置大,可能到达Gbit的程度。因为对响应时间没有要求,垃圾收集可以并行进行,一般适合8CPU以上的应用。
年老代大小选择
响应时间优先的应用:
年老代使用并发收集器,所以其大小需要小心设置,一般要考虑并发会话率
和会话持续时间
等一些参数。如果堆设置小了,可以会造成内存碎片、高回收频率以及应用暂停而使用传统的标记清除方式;如果堆大了,则需要较长的收集时间。最优化的方案,一般需要参考以下数据获得:
1. 并发垃圾收集信息
2. 持久代并发收集次数
3. 传统GC信息
4. 花在年轻代和年老代回收上的时间比例
减少年轻代和年老代花费的时间,一般会提高应用的效率
吞吐量优先的应用
一般吞吐量优先的应用都有一个很大的年轻代和一个较小的年老代。原因是,这样可以尽可能回收掉大部分短期对象,减少中期的对象,而年老代尽存放长期存活对象。
较小堆引起的碎片问题
因为年老代的并发收集器使用标记、清除算法,所以不会对堆进行压缩。当收集器回收时,他会把相邻的空间进行合并,这样可以分配给较大的对象。但是,
当堆空间较小时,运行一段时间以后,就会出现“碎片”,如果并发收集器找不到足够的空间,那么并发收集器将会停止,然后使用传统的标记、清除方式进行回
收。如果出现“碎片”,可能需要进行如下配置:
1.
-XX:+UseCMSCompactAtFullCollection:
使用并发收集器时,开启对年老代的压缩。
2.
-XX:CMSFullGCsBeforeCompaction=0:
上面配置开启的情况下,这里设置多少次Full
GC后,对年老代进行压缩
分享到:
相关推荐
* 垃圾收集(GC):是JVM中自动管理内存的机制,用于回收无用的对象。 * 垃圾收集算法:有串行回收器、并行回收器、并发标记清除回收器等多种算法。 * 垃圾收集统计:可以使用jstat命令来查看垃圾收集情况。 实际...
3. **垃圾回收**:在JDK 6中,垃圾收集器有所改进,提供了更好的内存管理,降低了应用暂停时间,提升了整体性能。 4. **NIO.2**:引入了新的文件系统API,即Java NIO.2,提供了异步I/O操作,增强了文件操作的灵活性...
6. **更好的垃圾回收**:JDK 7改进了垃圾回收机制,尤其是G1(Garbage-First)垃圾收集器,提升了内存管理的效率。 **安装与环境配置** 压缩包内的“配置环境.txt”文件应该包含了关于如何在Windows 32位系统上...
3. **改进的垃圾回收机制**:G1垃圾收集器的引入,这是一种低延迟的垃圾收集器,特别适合于具有大量内存的应用程序。 4. **新的NIO.2 API**:增强了文件I/O操作的能力,支持文件观察者模式,简化了文件系统的访问。 ...
2. **改进的内存管理**:这个版本引入了G1(Garbage First)垃圾收集器的早期版本,这是一种并行的、适应性的垃圾回收策略,旨在减少暂停时间,提高服务器应用的响应速度。 3. **NIO.2**:JDK 1.6引入了新的非阻塞I...
Java 8的JVM在性能上有显著提升,包括改进的垃圾回收机制和更高效的内存管理,例如G1垃圾收集器的引入,优化了大型应用的内存分配和回收。 3. **Java类库**:JDK 8的类库扩展了许多新功能,如`java.time`包提供了更...
9. **内存管理和性能优化**: JDK 8在内存管理方面进行了优化,例如改进的垃圾回收机制(G1垃圾收集器),以及对于大型数据集处理的性能提升。 10. **多线程编程**: Java 8提供了更好的并发库和工具,使得开发者可以...
2. **改进的内存管理**:引入了G1垃圾收集器,这是一种新的垃圾回收机制,可以更有效地管理内存,减少停顿时间。 3. **NIO.2**:引入了新的文件系统API,提供了更好的异步I/O支持,增强了对操作系统文件系统的访问...
垃圾回收(Garbage Collection, GC)是JVM自动管理内存的重要机制,通过`jstat -gc`命令,我们可以得到以下关键指标: 1. **年轻代**(Young Generation):包括Eden区和两个Survivor区。新创建的对象首先被分配到...
5. **JVM改进**:JDK 1.7引入了G1(Garbage First)垃圾收集器作为可选的垃圾回收策略,它旨在减少停顿时间,同时保持良好的总体吞吐量。 6. **开发者工具**:JDK 1.7.0_80包含了JDK自带的开发工具,如javac编译器...
10. **改进的编译器和JVM性能**:JDK 8的编译器(JIT)和垃圾回收机制(G1垃圾收集器)都有所优化,提高了程序的运行效率和内存管理性能。 压缩包中的"jdk-8u191-windows-x64.exe"文件是Windows 64位版本的JDK 8...
- JVM的垃圾回收机制(如G1垃圾收集器)在1.8版本中有显著优化。 - `-XX`选项允许开发者调整JVM参数以优化性能。 总之,JDK 1.8 64位Linux版本为开发者提供了强大的开发环境,结合Java 8的新特性以及64位系统的...
这个版本的更新包括了重要的安全补丁,增强了垃圾回收机制,提升了JVM(Java虚拟机)的性能,并对Java语言的一些API进行了增强。 二、主要特性与改进 1. **Lambda表达式和函数式接口**:Java 8引入了Lambda表达式...
6. **JVM日志与故障排查**:通过-JDK自带的jmap、jhat、jstack和jinfo等命令,可以生成堆转储、分析内存、查看线程堆栈信息和配置信息,辅助故障诊断。 7. **类加载机制**:JVM的双亲委派模型确保了类加载的一致性...
在JDK 7中,垃圾回收机制得到了显著的优化。特别是对G1(Garbage First)收集器进行了增强,使得它在多核处理器上表现更佳,减少了应用程序的暂停时间,提高了吞吐量。 ##### 2.2 文件系统API增强 为了更好地支持...
2. **性能优化**:Oracle团队不断对JVM(Java虚拟机)进行优化,提升运行效率,比如垃圾回收机制的改进,这直接影响到Java应用的运行速度。 3. **API增强**:JDK 8引入了大量的新API,如Lambda表达式、Stream API、...
服务器和分布式系统方面,JDK8提供了许多对高并发和分布式环境的支持,如并发工具类库、改进的垃圾回收机制等。例如,G1(Garbage First)垃圾收集器在大型分布式系统中表现出色,它能够平衡暂停时间和空间效率。 ...
5. **改进的垃圾收集器(G1和ZGC)**:优化了垃圾回收机制,提高了应用的响应时间和吞吐量。 三、JDK 11.0.16.1的更新与优化 JDK 11.0.16.1是一个更新版本,主要修复了一些已知的安全漏洞,提高了系统的安全性。...
- **性能优化**:JDK 1.8在性能方面做了很多优化,比如G1垃圾收集器的改进、Lambda表达式引入、 invokedynamic指令的应用等,这些都可以提高程序的运行效率。 - **内存管理**:理解JVM的内存模型,包括堆内存、栈...
JVM调优通常涉及以下几个方面:内存管理、垃圾收集策略、线程管理以及类加载机制等。有效的JVM调优能够显著提升Java应用的性能表现。 #### 二、JVM常见参数 ##### 堆栈相关 - **-Xss**:调整线程栈大小。线程栈...