`
huntfor
  • 浏览: 201135 次
  • 性别: Icon_minigender_1
  • 来自: 杭州
社区版块
存档分类
最新评论

[leetcode]Combination Sum II

 
阅读更多

新博文地址:

[leetcode]Combination SumII

Combination Sum II

Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

Each number in C may only be used once in the combination.

Note:
All numbers (including target) will be positive integers.
Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
The solution set must not contain duplicate combinations.
For example, given candidate set 10,1,2,7,6,1,5 and target 8,
A solution set is:
[1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]

具体思路跟Combination Sum 差不多,只不过不允许重复,只能从数组中拿数字,这就增加了一点难度,如果单纯的用dfs,如何避免出现[1,2,3,3,3,4,5] - 6中找到了[1,2,3][1,2,3][1,2,3][3,3][3,3],[3,3]等重复组合?

我本来尝试接触所有子集,并且从中寻找和为target的子集。这种思路很暴力,但是好在简单,但是时间复杂度已经高达O(n!),必挂无疑。不过还是可以作为参考的。

 这个是TLE代码,不感兴趣就直接跳过

 public List<List<Integer>> combinationSum2(int[] num, int target) {
    	List<List<Integer>> result = new ArrayList<List<Integer>>();
    	Arrays.sort(num);
    	int length = num.length - 1;
    	for(; length >= 0 && num[length] > target ;length--);
    	if(length <= 0){
    		return result;
    	}
    	int[] newNum = Arrays.copyOf(num, length + 1);
    	Set<List<Integer>> combination = getCombination(newNum,target);
        for(List<Integer> list : combination){
        	if(getSum(list) == target){
        		result.add(list);
        	}
        }
        return result;
    }
    private int getSum(List<Integer> list){
    	int sum = 0;
    	for(int tem : list){
    		sum += tem;
    	}
    	return sum;
    }
    private Set<List<Integer>> getCombination(int[] num,int target){//时间复杂度太大了
    	Set<List<Integer>> combination = new HashSet<List<Integer>>();
    	if(num.length == 1){
    		List<Integer> list = new ArrayList<Integer>();
    		list.add(num[0]);
    		combination.add(list);
    		return combination;
    	}
    	int[] preNum = Arrays.copyOf(num, num.length - 1);
    	Set<List<Integer>> preCombination = getCombination(preNum,target);
    	for(List<Integer> list : preCombination){
    		List<Integer> copy = new ArrayList<Integer>(list);
    		if(getSum(copy) < target){
    			copy.add(num[num.length - 1]);
    			combination.add(copy);
    		}
    	}
    	List<Integer> singleElement = new ArrayList<Integer>();
    	singleElement.add(num[num.length - 1]);
    	combination.addAll(preCombination);
    	combination.add(singleElement);
    	return combination;
    }

 这里没有考虑空集,因为空集肯定不满足条件,当然别的情况下,可能需要考虑空集。

毫无疑问,该算法是个坑。

 

因此考虑Combination Sum 中的算法,依然DFS,并在DFS中适当的剪枝,比如上例:在1,2,3,3,3,4,4,5,5,5,6, 查找和为7的子集,当我们找到4的时候,发现1234满足条件,那么就直接退出该层递归。因为后面的要么还是1234 = 7,要么>7。然后退到了index = 2(num = 3)的这层递归,看到3的后面还是3,直接跳过,因为如果index = 3的这个3,这一层如果能找到合法序列,那么在index=2这个3的这一层,必然能找到相同的合法序列。即,前者是完全cover后者的,因此我们向后找,找到第一个不为3的数字4,既然从4开始dfs,可能比较绕,仔细想一下不难明白。

代码如下:

 

	List<List<Integer>> result = new ArrayList<List<Integer>>();
	public List<List<Integer>> combinationSum2(int[] num, int target) {
		Arrays.sort(num);
		int length = num.length -1;
		for(; length >= 0 && num[length] > target ;length--);
    	if(length < 0){
    		return result;
    	}
    	int[] newNum = Arrays.copyOf(num, length + 1);
        //以上只是做了一个简答的预处理,完全可以不写,对复杂度也无影响
    	for(int i = 0 ; i < newNum.length; i++){
    		dfs(new ArrayList<Integer>(),newNum,i,target);
    		for(int j = i + 1; j < newNum.length && newNum[j] == newNum[i];j++,i++);
    	}
    	return result;
	}
	
	private void dfs(List<Integer> list,int[] num ,int index,int target){
		if(index >= num.length){
			return;
		}
		if(num[index] == target){
			List<Integer> copy = new ArrayList<Integer>(list);
			copy.add(target);
			result.add(copy);
		}
		if(num[index] >= target){
			return;
		}
			list.add(num[index]);
			for(int j = index + 1; j < num.length; j++){
				dfs(list, num, j, target - num[index]);
				if(num[j] >= target - num[index]){//dont search the same combination
					break;
				}
				for(int k = j + 1; k < num.length && num[k] == num[j];k++,j++);
			}
			list.remove(list.size() - 1);
	}

 

分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics