在Android的图片处理中,碰到的一个非常普遍的问题便是OOM错误 为此网上也有很多例子,而在之前的一篇转载里 提到了ListView中加载图片的ImageLoader,而其中有一处,使用到了名为SoftPreference的类 这是Java中的一个类 也就是所谓的软引用 在查询了相关的资料以后 会发现SoftPreference的特性,非常适合用来处理OOM引起的问题 下面是百度文库的一篇转载:
SoftReference、Weak Reference和PhantomRefrence分析和比较
本文将谈一下对SoftReference(软引用)、WeakReference(弱引用)和PhantomRefrence(虚引用)的理解,这三个类是对heap中java对象的应用,通过这个三个类可以和gc做简单的交互。
强引用:
除了上面提到的三个引用之外,还有一个引用,也就是最长用到的那就是强引用。例如:
Object o=new Object();
Object o1=o;
上面代码中第一句是在heap堆中创建新的Object对象通过o引用这个对象,第二句是通过o建立o1到new Object()这个heap堆中的对象的引用,这两个引用都是强引用.只要存在对heap中对象的引用,gc就不会收集该对象.如果通过如下代码:
o=null;
o1=null;
如果显式地设置o和o1为null,或超出范围,则gc认为该对象不存在引用,这时就可以收集它了。可以收集并不等于就一会被收集,什么时候收集这要取决于gc的算法,这要就带来很多不确定性。例如你就想指定一个对象,希望下次gc运行时把它收集了,那就没办法了,有了其他的三种引用就可以做到了。其他三种引用在不妨碍gc收集的情况下,可以做简单的交互。
heap中对象有强可及对象、软可及对象、弱可及对象、虚可及对象和不可到达对象。应用的强弱顺序是强、软、弱、和虚。对于对象是属于哪种可及的对象,由他的最强的引用决定。如下:
String abc=new String("abc"); //1
SoftReference<String> abcSoftRef=new SoftReference<String>(abc); //2
WeakReference<String> abcWeakRef = new WeakReference<String>(abc); //3
abc=null; //4
abcSoftRef.clear();//5
第一行在heap对中创建内容为“abc”的对象,并建立abc到该对象的强引用,该对象是强可及的。
第二行和第三行分别建立对heap中对象的软引用和弱引用,此时heap中的对象仍是强可及的。
第四行之后heap中对象不再是强可及的,变成软可及的。同样第五行执行之后变成弱可及的。
SoftReference(软引用)
软引用是主要用于内存敏感的高速缓存。在jvm报告内存不足之前会清除所有的软引用,这样以来gc就有可能收集软可及的对象,可能解决内存吃紧问题,避免内存溢出。什么时候会被收集取决于gc的算法和gc运行时可用内存的大小。当gc决定要收集软引用是执行以下过程,以上面的abcSoftRef为例:
1、首先将abcSoftRef的referent设置为null,不再引用heap中的new String("abc")对象。
2、将heap中的new String("abc")对象设置为可结束的(finalizable)。
3、当heap中的new String("abc")对象的finalize()方法被运行而且该对象占用的内存被释放, abcSoftRef被添加到它的ReferenceQueue中。
注:对ReferenceQueue软引用和弱引用可以有可无,但是虚引用必须有,参见:
Reference(T paramT, ReferenceQueue<? super T>paramReferenceQueue)
被 Soft Reference 指到的对象,即使没有任何 Direct Reference,也不会被清除。一直要到 JVM 内存不足且 没有 Direct Reference 时才会清除,SoftReference 是用来设计 object-cache 之用的。如此一来 SoftReference 不但可以把对象 cache 起来,也不会造成内存不足的错误 (OutOfMemoryError)。我觉得 Soft Reference 也适合拿来实作 pooling 的技巧。
A obj = new A();
SoftRefenrence sr = new SoftReference(obj);
//引用时
if(sr!=null){
obj = sr.get();
}else{
obj = new A();
sr = new SoftReference(obj);
}
弱引用
当gc碰到弱可及对象,并释放abcWeakRef的引用,收集该对象。但是gc可能需要对此运用才能找到该弱可及对象。通过如下代码可以了明了的看出它的作用:
String abc=new String("abc");
WeakReference<String> abcWeakRef = new WeakReference<String>(abc);
abc=null;
System.out.println("before gc: "+abcWeakRef.get());
System.gc();
System.out.println("after gc: "+abcWeakRef.get());
运行结果:
before gc: abc
after gc: null
gc收集弱可及对象的执行过程和软可及一样,只是gc不会根据内存情况来决定是不是收集该对象。
如果你希望能随时取得某对象的信息,但又不想影响此对象的垃圾收集,那么你应该用 Weak Reference 来记住此对象,而不是用一般的 reference。
A obj = new A();
WeakReference wr = new WeakReference(obj);
obj = null;
//等待一段时间,obj对象就会被垃圾回收
...
if (wr.get()==null) {
System.out.println("obj 已经被清除了 ");
} else {
System.out.println("obj 尚未被清除,其信息是 "+obj.toString());
}
...
}
在此例中,透过 get() 可以取得此 Reference 的所指到的对象,如果返回值为 null 的话,代表此对象已经被清除。
这类的技巧,在设计 Optimizer 或 Debugger 这类的程序时常会用到,因为这类程序需要取得某对象的信息,但是不可以 影响此对象的垃圾收集。
PhantomRefrence(虚引用)
虚顾名思义就是没有的意思,建立虚引用之后通过get方法返回结果始终为null,通过源代码你会发现,虚引用通向会把引用的对象写进referent,只是get方法返回结果为null。先看一下和gc交互的过程在说一下他的作用。
1 不把referent设置为null,直接把heap中的new String("abc")对象设置为可结束的(finalizable).
2 与软引用和弱引用不同,先把PhantomRefrence对象添加到它的ReferenceQueue中,然后在释放虚可及的对象。
你会发现在收集heap中的new String("abc")对象之前,你就可以做一些其他的事情。通过以下代码可以了解他的作用。
import java.lang.ref.PhantomReference;
import java.lang.ref.Reference;
import java.lang.ref.ReferenceQueue;
import java.lang.reflect.Field;
public class Test {
public static boolean isRun = true;
public static void main(String[] args) throws Exception {
String abc = new String("abc");
System.out.println(abc.getClass() + "@" + abc.hashCode());
final ReferenceQueue referenceQueue = new ReferenceQueue<String>();
new Thread() {
public void run() {
while (isRun) {
Object o = referenceQueue.poll();
if (o != null) {
try {
Field rereferent = Reference.class
.getDeclaredField("referent");
rereferent.setAccessible(true);
Object result = rereferent.get(o);
System.out.println("gc will collect:"
+ result.getClass() + "@"
+ result.hashCode());
} catch (Exception e) {
e.printStackTrace();
}
}
}
}
}.start();
PhantomReference<String> abcWeakRef = new PhantomReference<String>(abc,
referenceQueue);
abc = null;
Thread.currentThread().sleep(3000);
System.gc();
Thread.currentThread().sleep(3000);
isRun = false;
}
}
结果为:
class java.lang.String@96354
gc will collect:class java.lang.String@96354
分享到:
相关推荐
YOLOv12:以注意力为中心的实时目标检测器
GO语言基础语法指令教程
MATLAB代码实现:分布式电源接入对配电网运行影响深度分析与评估,MATLAB代码分析:分布式电源接入对配电网运行影响评估,MATLAB代码:分布式电源接入对配电网影响分析 关键词:分布式电源 配电网 评估 参考文档:《自写文档,联系我看》参考选址定容模型部分; 仿真平台:MATLAB 主要内容:代码主要做的是分布式电源接入场景下对配电网运行影响的分析,其中,可以自己设置分布式电源接入配电网的位置,接入配电网的有功功率以及无功功率的大小,通过牛顿拉夫逊法求解分布式电源接入后的电网潮流,从而评价分布式电源接入前后的电压、线路潮流等参数是否发生变化,评估配电网的运行方式。 代码非常精品,是研究含分布式电源接入的电网潮流计算的必备程序 ,分布式电源; 配电网; 接入影响分析; 潮流计算; 牛顿拉夫逊法; 电压评估; 必备程序。,基于MATLAB的分布式电源对配电网影响评估系统
三相光伏并网逆变器:Mppt最大功率跟踪与800V中间母线电压的电力转换技术,三相光伏并网逆变器:实现最大功率跟踪与800V中间母线电压的优化处理,三相光伏并网逆变器 输入光伏Mppt 最大功率跟踪中间母线电压800V 后级三相光伏并网逆变器 ,三相光伏并网逆变器; 输入光伏Mppt; 最大功率跟踪; 中间母线电压800V; 后级逆变器,三相光伏并网逆变器:MPPT最大功率跟踪800V母线电压
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
西门子博途三部十层电梯程序案例解析:基于Wincc RT Professional V14及更高版本的应用探索,西门子博途三部十层电梯程序案例解析:基于Wincc RT Professional画面与V14及以上版本技术参考,西门子1200博途三部十层电梯程序案例,加Wincc RT Professional画面三部十层电梯程序,版本V14及以上。 程序仅限于参考资料使用。 ,西门子;1200博途;三部十层电梯程序案例;Wincc RT Professional;V14以上程序版本。,西门子V14+博途三部十层电梯程序案例:Wincc RT Pro专业画面技术解析
基于舆情数据的知识图谱推荐可视化系统论文,全原创,免费分享
基于Vivado源码的AM包络检调制解调与FIR滤波器设计在FPGA上的实现,基于Zynq-7000和Artix-7系列的AM包络检调制解调源码及Vivado环境下的实现,AM包络检调制解调,Vivado源码 FPGA的AM调制解调源码,其中FIR滤波器根据MATLAB设计。 【AM_jietiao】文件是基于zynq-7000系列,但没有涉及AD与DA,只是单纯的仿真。 【AM包络检调制解调_Vivado源码】文件基于Artix-7系列,从AD读入信号后,进行AM调制,并解调DA输出。 ,AM包络检调制解调;Vivado源码;FPGA;AM调制解调源码;FIR滤波器;MATLAB设计;Zynq-7000系列;Artix-7系列;AD读入信号;DA输出,AM包络调制解调源码:Zynq-7000与Artix-7 FPGA的不同实现
yugy
2025山东大学:DeepSeek应用与部署(部署方案大全+API调用+业务应用)-80页.pptx
chromedriver-mac-x64-135.0.7023.0(Dev).zip
基于单片机protues仿真的433MHz无线模块编解码收发通信测试(仿真图、源代码) 该设计为单片机protues仿真的433MHz无线模块收发通信测试; 1、433M超再生收发模块; 2、在仿真图中是把发射MCU的P2_7腿直接输入到接收MCU的INT0实现编码解码的; 3、通过433MHz无线模块实现无线通信的编解码功能; 4、按键控制指令; 5、液晶屏显示收发状态和信息;
资源说说明; 自带文件管理 adb操作以及应用管理等等的功能。 操作性对比其他应用较好。 参阅博文: https://blog.csdn.net/mg668/article/details/145689511?spm=1001.2014.3001.5352
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
智慧图书管理系统(源码+数据库+论文)java开发springboot框架javaweb,可做计算机毕业设计或课程设计 【功能需求】 本系统分为读者、管理员2个角色 读者可以进行注册登录、浏览图书以及留言、图书借阅、图书归还、图书续借、个人中心、论坛交流、等功能 管理员可以进行读者管理、图书管理、论坛论坛回复管理、图书借阅管理(下架、库存管理、修改、删除)、轮播图管理 【环境需要】 1.运行环境:最好是java jdk 1.8,我们在这个平台上运行的。其他版本理论上也可以。 2.IDE环境:IDEA,Eclipse,Myeclipse都可以。 3.tomcat环境:Tomcat 7.x,8.x,9.x版本均可 4.数据库:MySql 5.7/8.0等版本均可; 【购买须知】 本源码项目经过严格的调试,项目已确保无误,可直接用于课程实训或毕业设计提交。里面都有配套的运行环境软件,讲解视频,部署视频教程,一应俱全,可以自己按照教程导入运行。附有论文参考,使学习者能够快速掌握系统设计和实现的核心技术。
三相APFC电路与单相Boost PFC电路仿真模型:电压外环电流内环双闭环控制研究,三相电路仿真模型:探索APFC电路、单相PFC电路及BoostPFC电路的动态特性与双闭环控制策略,APFC电路,单相PFC电路,单相BoostPFC电路仿真模型。 网侧220V 50Hz,输出电压设置为50Hz。 电压外环电流内环双闭环控制仿真模型 ,APFC电路; 单相PFC电路; 单相BoostPFC电路仿真模型; 网侧电压; 220V 50Hz; 输出电压50Hz; 电压外环电流内环双闭环控制仿真模型。,基于APFC电路的单相Boost PFC仿真模型:网侧电压220V/50Hz下电压电流双闭环控制的研究与应用
MATLAB环境下ADMM算法在分布式调度中的应用:比较并行与串行算法(Jocobi与Gaussian Seidel)的优化效果与实现细节——基于YALMIP和GUROBI的仿真平台复刻参考文档的研究结果。,MATLAB下ADMM算法在分布式调度中的并行与串行算法应用:基于YALMIP与GUROBI的仿真研究,MATLAB代码:ADMM算法在分布式调度中的应用 关键词:并行算法(Jocobi)和串行算法(Gaussian Seidel, GS) 参考文档:《主动配电网分布式无功优化控制方法》《基于串行和并行ADMM算法的电-气能量流分布式协同优化》 仿真平台:MATLAB YALMIP GUROBI 主要内容:ADMM算法在分布式调度中的应用 复刻参考文档 ,关键词:ADMM算法; 分布式调度; 并行算法(Jocobi); 串行算法(Gaussian Seidel, GS); MATLAB代码; YALMIP; GUROBI; 主动配电网; 无功优化控制方法; 能量流分布式协同优化。,MATLAB实现:ADMM算法在分布式调度中的并行与串行优化应用
“考虑P2G、碳捕集与碳交易机制的综合能源系统优化调度模型研究”,考虑电转气P2G与碳捕集设备的热电联供综合能源系统优化调度模型研究(含碳交易机制与四种算例场景分析),考虑P2G和碳捕集设备的热电联供综合能源系统优化调度模型 摘要:代码主要做的是一个考虑电转气P2G和碳捕集设备的热电联供综合能源系统优化调度模型,模型耦合CHP热电联产单元、电转气单元以及碳捕集单元,并重点考虑了碳交易机制,建立了综合能源系统运行优化模型,与目前市面上的代码不同,本代码完全复现了文档中所提出的四种算例场景,没有对比算例,买过去也没有任何意义,四种算例主要包括: 1)t不包括P2G、CCS、以及碳交易 2)t包括P2G,但是不包括CCS以及碳交易 3)t包括P2G和CCS,但是不包括碳交易 4)t包括P2G、CCS以及碳交易 且最终的实现效果与文档进行对比后,虽然数值无法100%一致,但是结果以及数值曲线,几乎完全一样,此版本为目前市面上最好的园区综合能源调度代码,没有之一 ,考虑电转气(P2G); 碳捕集设备; 热电联供综合能源系统; 优化调度模型; 碳交易机制; CHP热电联产单元; 耦合模型; 算
FS-LDM培训材料(DAY_2)_NCR数据仓库事业部.ppt
专题 平面向量的数量积(学生版)20250222.pdf