- 浏览: 26740 次
- 性别:
- 来自: 广州
文章分类
最新评论
最近在使用Spring Cloud进行分布式微服务搭建,顺便对集成KafKa的方案做了一些总结,今天详细介绍一下KafKa集群安装过程:
1. 在根目录创建kafka文件夹(service1、service2、service3都创建)
[root@localhost /]# mkdir kafka
2.通过Xshell上传文件到service1服务器:上传kafka_2.9.2-0.8.1.1.tgz到/software文件夹
3.远程copy将service1下的/software/kafka_2.9.2-0.8.1.1.tgz到service2、service3
[root@localhost software]# scp -r /software/kafka_2.9.2-0.8.1.1.tgz root@192.168.2.212:/software/
[root@localhost software]# scp -r /software/kafka_2.9.2-0.8.1.1.tgz root@192.168.2.213:/software/
3.copy /software/kafka_2.9.2-0.8.1.1.tgz到/kafka/目录(service1、service2、service3都执行)
[root@localhost software]# cp /software/kafka_2.9.2-0.8.1.1.tgz /kafka/
4.安装解压kafka_2.9.2-0.8.1.1.tgz(service1、service2、service3都执行)
[root@localhost /]# cd /kafka/
[root@localhost kafka]# tar -zxvf kafka_2.9.2-0.8.1.1.tgz
5.创建kafka消息目录(service1,service2,service3都要创建)
[root@localhost kafka]# mkdir kafkaLogs
6. 修改kafka的配置文件(service1,service2,service3都要配置)
[root@localhost /]# cd /kafka/kafka_2.9.2-0.8.1.1/
[root@localhost kafka_2.9.2-0.8.1.1]# cd config/
[root@localhost config]# ls
consumer.properties log4j.properties producer.properties server.properties test-log4j.properties tools-log4j.properties zookeeper.properties
[root@localhost config]# vi server.properties
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# see kafka.server.KafkaConfig for additional details and defaults
############################# Server Basics #############################
# The id of the broker. This must be set to a unique integer for each broker.
broker.id=0 ---唯一标识
############################# Socket Server Settings #############################
# The port the socket server listens on
port=19092 --当前broker对外提供的TCP端口,默认9092
# Hostname the broker will bind to. If not set, the server will bind to all interfaces
host.name=192.168.2.213 --一般是关闭状态,我们要将它打开,如果dns解析失败,会出现文件句柄泄露,不要小看dns解析失败率,如果dns解析失败率为万分之一,由于kafka的性能非常高,每个topic的每个分区,每秒可以处理十万多条的数据,即使万分之一的失败率,每秒也要泄露10个文件句柄,很快句柄数就会泄露完毕,就会超过linux打开文件的数,就会出现异常,所以我们配置ip,就不会进行dns解析
# Hostname the broker will advertise to producers and consumers. If not set, it uses the
# value for "host.name" if configured. Otherwise, it will use the value returned from
# java.net.InetAddress.getCanonicalHostName().
#advertised.host.name=<hostname routable by clients>
# The port to publish to ZooKeeper for clients to use. If this is not set,
# it will publish the same port that the broker binds to.
#advertised.port=<port accessible by clients>
# The number of threads handling network requests
num.network.threads=2 --broker网络处理的线程数,一般不做处理
# The number of threads doing disk I/O
num.io.threads=8 --broker io处理的线程数,这个数量一定要比log.dirs的目录数要大
# The send buffer (SO_SNDBUF) used by the socket server
socket.send.buffer.bytes=1048576 --将发送的消息先放到缓冲区,当到达一定量的时候再一次性发出
# The receive buffer (SO_RCVBUF) used by the socket server
socket.receive.buffer.bytes=1048576 --kafka接受消息的缓冲区,当接受的数量达到一定量的时候再写入磁盘
# The maximum size of a request that the socket server will accept (protection against OOM)
socket.request.max.bytes=104857600 --像kafka发送或者请求消息的最大数,此设置不能超过java堆栈大小
############################# Log Basics #############################
# A comma seperated list of directories under which to store log files
log.dirs=/kafka/kafkaLogs --多个目录可以用,隔开
# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
num.partitions=2 --一个topic默认分区数
############################# Log Flush Policy #############################
# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs here:
# 1. Durability: Unflushed data may be lost if you are not using replication.
# 2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
# 3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to exceessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.
# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000
# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000
############################# Log Retention Policy #############################
# The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log.
# The minimum age of a log file to be eligible for deletion
log.retention.hours=168
message.max.byte=5048576 --kafka每条消息容纳的最大大小
default.replication.factor=2 --默认的复制因子,默认消息只有一个副本,不太安全,所以设置为2,如果某个分区的消息失败了,我们可以使用另一个分区的消息服务
replica.fetch.max.byte=5048576 --kafka每条消息容纳的最大大小
# A size-based retention policy for logs. Segments are pruned from the log as long as the remaining
# segments don't drop below log.retention.bytes.
#log.retention.bytes=1073741824
# The maximum size of a log segment file. When this size is reached a new log segment will be created.
log.segment.bytes=536870912 --消息持久化的最大大小
# The interval at which log segments are checked to see if they can be deleted according
# to the retention policies
log.retention.check.interval.ms=60000
# By default the log cleaner is disabled and the log retention policy will default to just delete segments after their retention expires.
# If log.cleaner.enable=true is set the cleaner will be enabled and individual logs can then be marked for log compaction.
log.cleaner.enable=false --不使用log压缩
############################# Zookeeper #############################
# Zookeeper connection string (see zookeeper docs for details).
# This is a comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
# You can also append an optional chroot string to the urls to specify the
# root directory for all kafka znodes.
zookeeper.connect=192.168.2.211:2181,192.168.2.212:2181,192.168.2.213:2181 --zk地址
# Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=1000000
7.启动kafka服务
[root@localhost bin]# ./kafka-server-start.sh -daemon ../config/server.properties
[root@localhost bin]# jps
27413 Kafka
27450 Jps
17884 QuorumPeerMain
8.验证kafka集群
[root@localhost bin]# ./kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 2 --partitions 1 --topic test
Created topic "test".
9.在service1上开启producer程序
./kafka-console-producer.sh --broker-list 192.168.2.211:9092 --topic test
[root@localhost bin]# ./kafka-console-producer.sh --broker-list 192.168.2.211:9092 --topic test
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
10. 在service2上开启consumer程序
[root@localhost bin]# ./kafka-console-consumer.sh --zookeeper localhost:2181 --topic test --from-beginning
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
11.在producer中发送消息:hello honghu
[root@localhost bin]# ./kafka-console-consumer.sh --zookeeper localhost:2181 --topic test --from-beginning
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
hello honghu
12. 在consumer中接受到消息
[root@localhost bin]# ./kafka-console-consumer.sh --zookeeper localhost:2181 --topic test --from-beginning
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
hello honghu
有spring cloud b2b2c电子商务需求的朋友可以加企鹅求求:一零三八七七四六二六
1. 在根目录创建kafka文件夹(service1、service2、service3都创建)
[root@localhost /]# mkdir kafka
2.通过Xshell上传文件到service1服务器:上传kafka_2.9.2-0.8.1.1.tgz到/software文件夹
3.远程copy将service1下的/software/kafka_2.9.2-0.8.1.1.tgz到service2、service3
[root@localhost software]# scp -r /software/kafka_2.9.2-0.8.1.1.tgz root@192.168.2.212:/software/
[root@localhost software]# scp -r /software/kafka_2.9.2-0.8.1.1.tgz root@192.168.2.213:/software/
3.copy /software/kafka_2.9.2-0.8.1.1.tgz到/kafka/目录(service1、service2、service3都执行)
[root@localhost software]# cp /software/kafka_2.9.2-0.8.1.1.tgz /kafka/
4.安装解压kafka_2.9.2-0.8.1.1.tgz(service1、service2、service3都执行)
[root@localhost /]# cd /kafka/
[root@localhost kafka]# tar -zxvf kafka_2.9.2-0.8.1.1.tgz
5.创建kafka消息目录(service1,service2,service3都要创建)
[root@localhost kafka]# mkdir kafkaLogs
6. 修改kafka的配置文件(service1,service2,service3都要配置)
[root@localhost /]# cd /kafka/kafka_2.9.2-0.8.1.1/
[root@localhost kafka_2.9.2-0.8.1.1]# cd config/
[root@localhost config]# ls
consumer.properties log4j.properties producer.properties server.properties test-log4j.properties tools-log4j.properties zookeeper.properties
[root@localhost config]# vi server.properties
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# see kafka.server.KafkaConfig for additional details and defaults
############################# Server Basics #############################
# The id of the broker. This must be set to a unique integer for each broker.
broker.id=0 ---唯一标识
############################# Socket Server Settings #############################
# The port the socket server listens on
port=19092 --当前broker对外提供的TCP端口,默认9092
# Hostname the broker will bind to. If not set, the server will bind to all interfaces
host.name=192.168.2.213 --一般是关闭状态,我们要将它打开,如果dns解析失败,会出现文件句柄泄露,不要小看dns解析失败率,如果dns解析失败率为万分之一,由于kafka的性能非常高,每个topic的每个分区,每秒可以处理十万多条的数据,即使万分之一的失败率,每秒也要泄露10个文件句柄,很快句柄数就会泄露完毕,就会超过linux打开文件的数,就会出现异常,所以我们配置ip,就不会进行dns解析
# Hostname the broker will advertise to producers and consumers. If not set, it uses the
# value for "host.name" if configured. Otherwise, it will use the value returned from
# java.net.InetAddress.getCanonicalHostName().
#advertised.host.name=<hostname routable by clients>
# The port to publish to ZooKeeper for clients to use. If this is not set,
# it will publish the same port that the broker binds to.
#advertised.port=<port accessible by clients>
# The number of threads handling network requests
num.network.threads=2 --broker网络处理的线程数,一般不做处理
# The number of threads doing disk I/O
num.io.threads=8 --broker io处理的线程数,这个数量一定要比log.dirs的目录数要大
# The send buffer (SO_SNDBUF) used by the socket server
socket.send.buffer.bytes=1048576 --将发送的消息先放到缓冲区,当到达一定量的时候再一次性发出
# The receive buffer (SO_RCVBUF) used by the socket server
socket.receive.buffer.bytes=1048576 --kafka接受消息的缓冲区,当接受的数量达到一定量的时候再写入磁盘
# The maximum size of a request that the socket server will accept (protection against OOM)
socket.request.max.bytes=104857600 --像kafka发送或者请求消息的最大数,此设置不能超过java堆栈大小
############################# Log Basics #############################
# A comma seperated list of directories under which to store log files
log.dirs=/kafka/kafkaLogs --多个目录可以用,隔开
# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
num.partitions=2 --一个topic默认分区数
############################# Log Flush Policy #############################
# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs here:
# 1. Durability: Unflushed data may be lost if you are not using replication.
# 2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
# 3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to exceessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.
# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000
# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000
############################# Log Retention Policy #############################
# The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log.
# The minimum age of a log file to be eligible for deletion
log.retention.hours=168
message.max.byte=5048576 --kafka每条消息容纳的最大大小
default.replication.factor=2 --默认的复制因子,默认消息只有一个副本,不太安全,所以设置为2,如果某个分区的消息失败了,我们可以使用另一个分区的消息服务
replica.fetch.max.byte=5048576 --kafka每条消息容纳的最大大小
# A size-based retention policy for logs. Segments are pruned from the log as long as the remaining
# segments don't drop below log.retention.bytes.
#log.retention.bytes=1073741824
# The maximum size of a log segment file. When this size is reached a new log segment will be created.
log.segment.bytes=536870912 --消息持久化的最大大小
# The interval at which log segments are checked to see if they can be deleted according
# to the retention policies
log.retention.check.interval.ms=60000
# By default the log cleaner is disabled and the log retention policy will default to just delete segments after their retention expires.
# If log.cleaner.enable=true is set the cleaner will be enabled and individual logs can then be marked for log compaction.
log.cleaner.enable=false --不使用log压缩
############################# Zookeeper #############################
# Zookeeper connection string (see zookeeper docs for details).
# This is a comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
# You can also append an optional chroot string to the urls to specify the
# root directory for all kafka znodes.
zookeeper.connect=192.168.2.211:2181,192.168.2.212:2181,192.168.2.213:2181 --zk地址
# Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=1000000
7.启动kafka服务
[root@localhost bin]# ./kafka-server-start.sh -daemon ../config/server.properties
[root@localhost bin]# jps
27413 Kafka
27450 Jps
17884 QuorumPeerMain
8.验证kafka集群
[root@localhost bin]# ./kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 2 --partitions 1 --topic test
Created topic "test".
9.在service1上开启producer程序
./kafka-console-producer.sh --broker-list 192.168.2.211:9092 --topic test
[root@localhost bin]# ./kafka-console-producer.sh --broker-list 192.168.2.211:9092 --topic test
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
10. 在service2上开启consumer程序
[root@localhost bin]# ./kafka-console-consumer.sh --zookeeper localhost:2181 --topic test --from-beginning
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
11.在producer中发送消息:hello honghu
[root@localhost bin]# ./kafka-console-consumer.sh --zookeeper localhost:2181 --topic test --from-beginning
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
hello honghu
12. 在consumer中接受到消息
[root@localhost bin]# ./kafka-console-consumer.sh --zookeeper localhost:2181 --topic test --from-beginning
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
hello honghu
有spring cloud b2b2c电子商务需求的朋友可以加企鹅求求:一零三八七七四六二六
发表评论
-
跟我学习SpringCloud 第十一篇: 断路器监控(Finchley版本)-b2b2c小程序电子商务
2020-03-06 17:40 9一、Hystrix Dashboard简介 在微服务架构中 ... -
跟我学习SpringCloud 第十篇: 高可用的服务注册中心(Finchley版本)-b2b2c小程序电子商务
2020-03-06 17:36 12Eureka通过运行多个实例,使其更具有高可用性。 ... -
跟我学习SpringCloud 第九篇: Spring Cloud Sleuth(Finchley版本)-b2b2c小程序电子商务
2020-03-06 17:33 11这篇文章主要讲述服务 ... -
跟我学习SpringCloud 第八篇: 消息总线(Spring Cloud Bus)(Finchley版本)-b2b2c小程序电子商务
2020-03-05 15:26 320Spring Cloud Bus 将分布式的节点用轻量的消息 ... -
跟 我学习SpringCloud第六篇: 分布式配置中心(Spring Cloud Config)-B2B2C小程序电子商务
2020-03-05 15:20 337在分布式系统中,由于服务数量巨多,为了方便服务配置文件统一 ... -
跟我学习SpringCloud 第七篇: 高可用的分布式配置中心(Config)-b2b2c小程序电子商务
2020-03-05 15:15 330上一篇文章讲述了一个服务如何从配置中心读取文件,配置中心如何 ... -
跟我学习SpringCloud 教程 第五篇:路由网关(zuul)(Finchley版本)-b2b2c小程序电子
2020-03-04 19:23 404SpringCloud分布式微服务 ... -
跟我学习SpringCloud 教程 第四篇:断路器(Hystrix)(Finchley版本)-b2b2c小程序电子商务
2020-03-04 19:21 465在微服务架构中,根据 ... -
跟我学习SpringCloud 教程第三篇: 服务消费者(Feign)-b2b2c小程序电子商务
2020-03-04 19:19 322上一篇文章,讲述了如何通过RestTemplate+Ribb ... -
跟我学习SpringCloud 教程第二篇: 服务消费者(rest+ribbon)-b2b2c小程序电子商务
2020-03-03 18:29 335在微服务架构中,业务都会被拆分成一个独立的服务,服务与服务的 ... -
跟我学习SpringCloud 教程 第一篇: 服务的注册与发现Eureka(Finchley版本)-b2b2c小程序电子商务
2020-03-03 18:22 271一、简介 spring cloud 为开发人员提供了快速构 ... -
跟我学习SpringCloud 教程 第一篇: 服务的注册与发现Eureka(Finchley版本)-b2b2c小程序电子商务
2020-03-03 18:22 315一、简介 spring cloud 为开发人员提供了快速构 ... -
介绍Html
2020-02-27 18:55 3001、定义 HTML(Hyper Text Marku ... -
微服务云系统spring、spring MVC、spring Boot
2020-02-26 19:21 288Spring 是一个“引擎” ... -
spring cloud云服务架构代码结构详细讲解
2020-02-25 16:53 1上一篇我们介绍 ... -
spring cloud构建java版 鸿鹄云商 b2b2c o2o电子商务云商平台分销模式
2020-02-24 18:17 5公司规划的分销模式很多,有通用三级分销模式、分享一级分润模式 ... -
spring boot spring cloud规范响应格式以及统一异常处理
2020-02-24 17:35 16实现 1.创建ErrorResult类 了解sprin ... -
spring boot spring cloud -使用filter防止XSS
2020-02-24 17:17 1实现 1.创建XssHttpServle ... -
ssm框架中依赖的引入
2020-02-21 19:18 564<properties> < ... -
JAVA spring cloud boot b2b2c电子商务分布式微服务
2020-02-21 19:07 349公司最近升级了电子商务系统,将所有电子商务功能全部转为分布 ...
相关推荐
总之,搭建Kafka集群涉及多个步骤,包括Zookeeper集群的配置、Kafka的安装与配置、主题创建以及服务启动。正确配置和管理Kafka集群对于实现高效、稳定的数据流处理至关重要。随着对Kafka的深入理解和实践,你可以...
通过本文档的学习,我们不仅深入了解了 Kafka 的架构原理和使用方法,还掌握了 Kafka 集群的安装部署过程。此外,我们还学习了 Kafka 生产者和消费者的 Java API 使用方法,以及 JMS 规范的相关概念。这些知识对于...
下面是Kafka集群安装的详细步骤和相关知识点: 一、Kafka集群安装前提 在安装Kafka集群之前,需要安装Scala,因为Kafka是使用Scala编写的。Scala是Java虚拟机(JVM)上的函数式编程语言,提供了强大的函数式编程...
### Kafka集群安装与配置详解 #### 一、概述 在分布式计算环境中,消息队列扮演着重要的角色。...通过上述步骤,用户可以轻松地部署一个稳定可靠的Kafka集群,为后续的数据处理和分析打下坚实的基础。
Kafka集群搭建和使用过程涉及多个技术要点和配置项,包括SASL安全机制、ACL权限设置、Kafka基础概念以及安装配置步骤等。下面将详细介绍这些知识点。 首先,SASL(Simple Authentication and Security Layer)是为C...
搭建Kafka集群涉及到对虚拟机的安装配置、JDK环境的搭建、Zookeeper的安装配置等关键步骤。下面详细介绍各个知识点。 首先,虚拟机的安装是搭建Kafka集群的基础。文中提到了使用VMWare来安装三台虚拟机,并分配了...
**Kafka集群安装部署全量指南** Apache Kafka是一款开源流处理平台,由LinkedIn开发并贡献给了Apache软件基金会。它设计为一个高吞吐量、分布式的消息队列系统,用于处理实时数据流。Kafka通常与ZooKeeper一起使用...
本篇文档将详细介绍如何在Linux环境中搭建Kafka集群,同时结合Hadoop和Spark的分布式安装,构建一个完整的数据处理平台。 首先,搭建Kafka集群的基础条件包括: 1. 至少一台Linux服务器,但为了高可用性,推荐多台...
#### 六、Kafka集群的部署步骤 1. **环境准备**:选择合适的硬件配置,确保足够的磁盘空间和内存资源。 2. **软件安装**:从官方下载地址([http://kafka.apache.org/downloads](http://kafka.apache.org/downloads)...
### Kafka集群部署步骤详解 #### 一、安装Java环境(JDK 1.8) Kafka作为基于Java语言开发的消息中间件,其运行环境需要Java支持。为了确保Kafka能够正常运行,首先需要在每台服务器上安装Java环境。推荐使用JDK ...
下面是 Kafka 集群安装配置的详细步骤和知识点: 一、环境准备 * 系统版本:CentOS Linux release 7 64 位 * 服务器:3 台服务器,IP 分别为 10.10.10.11、10.10.10.12 和 10.10.10.13 * Kafka 安装路径:/data * ...
本文不讲kafka集群原理,只谈部署步骤。 默认读者已对kafka有最基本的认知,纯粹作为部署笔记,方便回忆。 另外本文是基于Windows部署的,Linux的步骤是基本相同的(只是启动脚本位置不同)。 kafka集群类型: ...
(1)Kafka集群无法在跨网络的环境中正常工作:解决方法是分清内网和外网的区别,确保Kafka集群可以在跨网络的环境中正常工作。 (2)Kafka集群数据节点不均衡错误:解决方法是创建topic时,确保数据节点的均衡分配...
本篇将详细解析如何在Linux环境下配置一个3节点的Kafka集群,特别关注`server.properties`配置文件中的`zookeeper.connect`设置。 首先,我们需要理解Kafka集群的基础架构。Kafka集群由多个Brokers(即服务器)组成...
kafka集群搭建需要完成以下步骤: 1. 准备工作,关闭防火墙和配置hosts和hostname。 2. Java环境配置,解压安装Java安装包和配置环境变量。 3. ZooKeeper安装,解压安装ZooKeeper安装包和创建ZooKeeper数据目录。 4...
【Kafka集群安装部署-自带zookeeper】 Apache Kafka是一个分布式流处理平台,它被设计用于构建实时数据管道和流应用程序。Kafka的核心概念包括topic、producer...理解这些概念和步骤是构建稳定、高效Kafka集群的关键。
本文档将详细介绍如何在三台Ubuntu 16虚拟机上搭建Kafka集群,并进行基本的测试,确保其正常运行。 **1. 准备工作** 在开始之前,你需要准备三台配置了Ubuntu 16.04操作系统的虚拟机,IP地址分别为192.168.172.145...
### Kafka集群及Kafka-Manager安装部署 #### 一、Kafka集群的安装与配置 **1. 工作环境准备** - **JDK**:确保安装了JDK 1.8.0_60版本。这一步骤至关重要,因为Kafka依赖于Java运行时环境。 - **Zookeeper**...
Linux下Kafka自带zookeeper安装步骤单点/集群整合