https://www.loggly.com/
日志的分析和监控在系统开发中占非常重要的地位,系统越复杂,日志的分析和监控就越重要,常见的需求有:
- 根据关键字查询日志详情
- 监控系统的运行状况
- 统计分析,比如接口的调用次数、执行时间、成功率等
- 异常数据自动触发消息通知
- 基于日志的数据挖掘
很多团队在日志方面可能遇到的一些问题有:
- 开发人员不能登录线上服务器查看详细日志,经过运维周转费时费力
- 日志数据分散在多个系统,难以查找
- 日志数据量大,查询速度慢
- 一个调用会涉及多个系统,难以在这些系统的日志中快速定位数据
- 数据不够实时
常见的一些重量级的开源Trace系统有
这些项目功能强大,但对于很多团队来说过于复杂,配置和部署比较麻烦,在系统规模大到一定程度前推荐轻量级下载即用的方案,比如logstash+elasticsearch+kibana(LEK)组合。
对于日志来说,最常见的需求就是收集、查询、显示,正对应logstash、elasticsearch、kibana的功能。
logstash
logstash部署简单,下载一个jar就可以用了,对日志的处理逻辑也很简单,就是一个pipeline的过程
inputs >> codecs >> filters >> outputs
对应的插件有
从上面可以看到logstash支持常见的日志类型,与其他监控系统的整合也很方便,可以将数据输出到zabbix、nagios、email等。
推荐用redis作为输入缓冲队列。
你还可以把数据统计后输出到graphite,实现统计数据的可视化显示。
参考文档
elasticsearch
elasticsearch是基于lucene的开源搜索引擎,近年来发展比较快,主要的特点有
- real time
- distributed
- high availability
- document oriented
- schema free
- restful api
elasticsearch的详细介绍以后再写,常用的一些资源如下
中文
smartcn, ES默认的中文分词
https://github.com/elasticsearch/elasticsearch-analysis-smartcn
mmseg
https://github.com/medcl/elasticsearch-analysis-mmseg
ik
https://github.com/medcl/elasticsearch-analysis-ik
pinyin, 拼音分词,可用于输入拼音提示中文
https://github.com/medcl/elasticsearch-analysis-pinyin
stconvert, 中文简繁体互换
https://github.com/medcl/elasticsearch-analysis-stconvert
常用插件
elasticsearch-servicewrapper,用Java Service Wrapper对elasticsearch做的一个封装
https://github.com/elasticsearch/elasticsearch-servicewrapper
Elastic HQ,elasticsearch的监控工具
http://www.elastichq.org
elasticsearch-rtf,针对中文集成了相关插件(rtf = Ready To Fly)
https://github.com/medcl/elasticsearch-rtf
作者主页
kibana
kibana是一个功能强大的elasticsearch数据显示客户端,logstash已经内置了kibana,你也可以单独部署kibana,最新版的kibana3是纯html+js客户端,可以很方便的部署到Apache、Nginx等Http服务器。
kibana3的地址: https://github.com/elasticsearch/kibana
kibana2的地址: https://github.com/rashidkpc/Kibana
kibana3 demo地址: http://demo.kibana.org
从demo可以先看一下kibana的一些基本功能
图表
数据表格,可以自定义哪些列显示以及显示顺序
可以看到实际执行的查询语句
新加一行
新加panel,可以看到支持的panel类型
加一个饼图
用地图显示统计结果
按照http response code来统计
丰富的查询语法
安装部署
下面列一下一个简易LEK体验环境的搭建步骤
安装jdk 1.7
省略安装过程,推荐1.7+版本
java -version
设置java的环境变量,比如
sudo vim ~/.bashrc
>>
export JAVA_HOME=/usr/lib/jvm/java-7-oracle
export JRE_HOME=${JAVA_HOME}/jre
export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib
export PATH=${JAVA_HOME}/bin:$PATH
>>
source ~/.bashrc
安装redis
cd ~/src
wget http://download.redis.io/releases/redis-2.6.16.tar.gz
tar -zxf redis-2.6.16.tar.gz
cd redis-2.6.16
make
sudo make install
可以通过redis源代码里utils/install_server下的脚本简化配置工作
cd utils
sudo ./install_server.sh
install_server.sh在问你几个问题后会把redis安装为开机启动的服务,可以通过下面的命令行来启动/停止服务
sudo /etc/init.d/redis_ start/end
启动redis客户端来验证安装
redis-cli
> keys *
安装Elasticsearch
cd /search
sudo mkdir elasticsearch
cd elasticsearch
sudo wget http://download.elasticsearch.org/elasticsearch/elasticsearch/elasticsearch-0.90.5.zip
sudo unzip elasticsearch-0.90.5.zip
elasticsearch解压即可使用非常方便,接下来我们看一下效果,首先启动ES服务,切换到elasticsearch目录,运行bin下的elasticsearch
cd /search/elasticsearch/elasticsearch-0.90.5
bin/elasticsearch -f
访问默认的9200端口
curl -X GET http://localhost:9200
安装logstash
cd /search
sudo mkdir logstash
cd logstash
sudo wget http://download.elasticsearch.org/logstash/logstash/logstash-1.2.1-flatjar.jar
logstash下载即可使用,命令行参数可以参考logstash flags,主要有
agent #运行Agent模式
-f CONFIGFILE #指定配置文件
web #自动Web服务
-p PORT #指定端口,默认9292
安装kibana
logstash的最新版已经内置kibana,你也可以单独部署kibana。kibana3是纯粹JavaScript+html的客户端,所以可以部署到任意http服务器上。
cd /search
sudo mkdir kibana
sudo wget http://download.elasticsearch.org/kibana/kibana/kibana-latest.zip
sudo unzip kibana-latest.zip
sudo cp -r kibana-latest /var/www/html
可以修改config.js来配置elasticsearch的地址和索引。
用浏览器访问试试看 http://127.0.0.1/html/kibana-latest/index.html
集成
把上面的系统集成起来
首先把redis和elasticsearch都启动起来
为logstash新建一个配置文件
cd /search/logstash
sudo vi redis.conf
配置文件内容如下
input {
redis {
host => "127.0.0.1"
port => "6379"
key => "logstash:demo"
data_type => "list"
codec => "json"
type => "logstash-redis-demo"
tags => ["logstashdemo"]
}
}
output {
elasticsearch {
host => "127.0.0.1"
}
}
用这个配置文件启动logstash agent
java -jar /search/logstash/logstash-1.2.1-flatjar.jar agent -f /search/logstash/redis.conf &
启动logstash内置的web
java -jar /search/logstash/logstash-1.2.1-flatjar.jar web &
查看web,应该还没有数据
http://127.0.0.1:9292
在redis 加一条数据
RPUSH logstash:demo "{\"time\": \"2013-01-01T01:23:55\", \"message\": \"logstash demo message\"}"
看看elasticsearch中的索引现状
curl 127.0.0.1:9200/_search?pretty=true
curl -s http://127.0.0.1:9200/_status?pretty=true | grep logstash
再通过logstash web查询一下看看
http://127.0.0.1:9292
通过单独的kibana界面查看
http://127.0.0.1/html/kibana-latest/index.html#/dashboard/file/logstash.json
数据清理
logstash默认按天创建ES索引,这样的好处是删除历史数据时直接删掉整个索引就可以了,方便快速。
elasticsearch也可以设置每个文档的ttl(time to live),相当于设置文档的过期时间,但相比删除整个索引要耗费更多的IO操作。
索引
elasticsearch默认会按照分隔符对字段拆分,日志有些字段不要分词,比如url,可以为这类字段设置not_analyzed属性。
设置multi-field-type属性可以将字段映射到其他类型。multi-field-type。
大量日志导入时用bulk方式。
对于日志查询来说,filter比query更快 过滤器里不会执行评分而且可以被自动缓存。query-dsl。
elasticsearch默认一个索引操作会在所有分片都完成对文档的索引后才返回,你可以把复制设置为异步来加快批量日志的导入。
elasticsearch 优化
优化JVM
优化系统可以打开最大文件描述符的数量
适当增加索引刷新的间隔
最佳实践
- 首先你的程序要写日志
- 记录的日志要能帮助你分析问题,只记录"参数错误"这样的日志对解决问题毫无帮助
- 不要依赖异常,异常只处理你没考虑到的地方
- 要记录一些关键的参数,比如发生时间、执行时间、日志来源、输入参数、输出参数、错误码、异常堆栈信息等
- 要记录sessionid、transitionid、userid等帮你快速定位以及能把各个系统的日志串联起来的关键参数
- 推荐纯文本+json格式
- 使用队列
相关推荐
基于docker-compose构建filebeat + Logstash +Elasticsearch+ kibana日志系统 对nginx日志进行正则切割字段。 https://www.jianshu.com/p/f7927591d530
filebeat+logstash+ES集群+kibana实战.txt
Logstash, OSSEC + Logstash + Elasticsearch + Kibana OSSEC使用 LOGSTASH - ELASTICSEARCH - KIBANA 管理 OSSEC警报管理现在是Magento安装脚本的一部分。 https://github.com/magenx/Magento-Automat
ELK堆栈是由Elasticsearch、Logstash和Kibana三个开源工具组成的,它们通常联合使用来实现日志数据的收集、分析和可视化。Elasticsearch是一个基于Lucene构建的开源搜索引擎,具有分布式、多租户的能力,提供搜索...
Logstash、Elasticsearch 和 Kibana(简称 LEK)的组合提供了一个轻量级且高效的解决方案,用于日志分析、监控以及数据可视化。 Logstash 是一个数据收集引擎,它的主要功能包括收集、过滤和转发各种类型的数据。它...
第一步是设置数据源,根据我们之前推送给elasticsearch的日志数据,使用management标签创建索引模式; 第二步根据第一步创建的索引模式,使用Visualize 标签页用来设计可视化图形; 第三步根据第二步做好的可视化...
总结起来,"elasticsearch+logstash+kibana+filebeat.7z (ELK 7.9.0)" 压缩包包含了一套完整的日志管理和分析工具链,适用于大数据环境,可以帮助企业实现高效的数据收集、处理、存储和可视化。通过使用这套工具,...
大数据搜索与日志挖掘及可视化方案--ELK+Stack+Elasticsearch+Logstash+Kibana大数据搜索与日志挖掘及可视化方案--ELK+Stack+Elasticsearch+Logstash+Kibana
elasticsearch安装,elk elasticsearch+logstash+filebeat+kibana安装部署文档,运维监控
Logstash+ElasticSearch+Kibana+Redis日志分析和监控工具 注意:关于安装文档,网络上有很多,可以参考,不可以全信,而且三件套各自的版本很多,差别也不一样,需要版本匹配上才能使用。推荐直接使用官网的这一套:...
说明文档E-mail:Blog:======ELK集成: Awesant + Logstash + Elasticsearch +Kibana + Nginx + Redis======单机版(Standalone): Logstash-index(收集日志)+ Elasticsearch(索引)+ Kibana(前端) +Nginx...
Heroku日志和ELK(Logstash + Elasticsearch + Kibana)演示 要求: 码头工人 Docker撰写 Docker Machine(如果您未使用Linux) Heroku工具带 观看实际的演示: 首先,启动3个容器(Logstash,Elasticsearch和...
1,什么是Logstash 2,日志平台架构及Logstash技术要点 3,Kibana界面查询过滤操作 4,Kibana一些实例介绍 5,导航界面介绍及如何接入
ELK(Elasticsearch+logstash+kibana).zip
ELK 套件是由Elasticsearch、Logstash和Kibana三个组件组成的开源日志分析平台。Elasticsearch是一个高性能、分布式、全文搜索引擎,用于存储和检索大量结构化和非结构化的数据。Logstash则是一个数据收集和处理引擎...
es:elasticsearch 对数据进行存储,分类,搜索 logstash: 日志收集,filter(过滤),日志输出到(reids,kafka,es)中 kibana:日志展示(查询es中保存的数据)
ELK(Elasticsearch, Logstash, Kibana)是一个流行的开源日志分析和可视化解决方案,广泛用于收集、解析、存储和展示各种日志数据。这个压缩包包含了ELK堆栈的主要组件,版本为7.6.1,适用于Linux x86_64架构。 **...
**ELK(Elasticsearch + Logstash + Kibana)** 是一个强大的日志管理和分析解决方案,广泛应用于大数据场景,特别是对于实时日志收集、处理、存储和可视化。这个组合提供了从日志生成到可视化的全套流程,帮助企业更...
Logstash + Elasticsearch + Kibana不用于生产! 这是一个超级易于使用的 Logstash docker 映像,其中包括收集、解析、存储日志、搜索日志、可视化日志和从日志中提取不同类型信息所需的一切。 这个多合一的 ...
### Logstash + Elasticsearch + Kibana (ELK) 日志系统安装部署教程 #### 一、环境准备 本文档将详细介绍如何在特定环境下部署一套基于Logstash + Elasticsearch + Kibana(简称ELK)的日志收集与分析系统。具体...