`
- 浏览:
1814 次
- 性别:
- 来自:
西安
-
HBase性能优化方法总结(二):写表操作
本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法。有关HBase系统配置级别的优化,可参考:淘宝Ken Wu同学的博客。
下面是本文总结的第二部分内容:写表操作相关的优化方法。
2. 写表操作
2.1 多HTable并发写
创建多个HTable客户端用于写操作,提高写数据的吞吐量,一个例子:
复制代码
static final Configuration conf = HBaseConfiguration.create();
static final String table_log_name = “user_log”;
wTableLog = new HTable[tableN];
for (int i = 0; i < tableN; i++) {
wTableLog[i] = new HTable(conf, table_log_name);
wTableLog[i].setWriteBufferSize(5 * 1024 * 1024); //5MB
wTableLog[i].setAutoFlush(false);
}
复制代码
2.2 HTable参数设置
2.2.1 Auto Flush
通过调用HTable.setAutoFlush(false)方法可以将HTable写客户端的自动flush关闭,这样可以批量写入数据到HBase,而不是有一条put就执行一次更新,只有当put填满客户端写缓存时,才实际向HBase服务端发起写请求。默认情况下auto flush是开启的。
2.2.2 Write Buffer
通过调用HTable.setWriteBufferSize(writeBufferSize)方法可以设置HTable客户端的写buffer大小,如果新设置的buffer小于当前写buffer中的数据时,buffer将会被flush到服务端。其中,writeBufferSize的单位是byte字节数,可以根据实际写入数据量的多少来设置该值。
2.2.3 WAL Flag
在HBae中,客户端向集群中的RegionServer提交数据时(Put/Delete操作),首先会先写WAL(Write Ahead Log)日志(即HLog,一个RegionServer上的所有Region共享一个HLog),只有当WAL日志写成功后,再接着写MemStore,然后客户端被通知提交数据成功;如果写WAL日志失败,客户端则被通知提交失败。这样做的好处是可以做到RegionServer宕机后的数据恢复。
因此,对于相对不太重要的数据,可以在Put/Delete操作时,通过调用Put.setWriteToWAL(false)或Delete.setWriteToWAL(false)函数,放弃写WAL日志,从而提高数据写入的性能。
值得注意的是:谨慎选择关闭WAL日志,因为这样的话,一旦RegionServer宕机,Put/Delete的数据将会无法根据WAL日志进行恢复。
2.3 批量写
通过调用HTable.put(Put)方法可以将一个指定的row key记录写入HBase,同样HBase提供了另一个方法:通过调用HTable.put(List<Put>)方法可以将指定的row key列表,批量写入多行记录,这样做的好处是批量执行,只需要一次网络I/O开销,这对于对数据实时性要求高,网络传输RTT高的情景下可能带来明显的性能提升。
2.4 多线程并发写
在客户端开启多个HTable写线程,每个写线程负责一个HTable对象的flush操作,这样结合定时flush和写buffer(writeBufferSize),可以既保证在数据量小的时候,数据可以在较短时间内被flush(如1秒内),同时又保证在数据量大的时候,写buffer一满就及时进行flush。下面给个具体的例子:
复制代码
for (int i = 0; i < threadN; i++) {
Thread th = new Thread() {
public void run() {
while (true) {
try {
sleep(1000); //1 second
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (wTableLog[i]) {
try {
wTableLog[i].flushCommits();
} catch (IOException e) {
e.printStackTrace();
}
}
}
}
};
th.setDaemon(true);
th.start();
}
复制代码
分享到:
Global site tag (gtag.js) - Google Analytics
相关推荐
本文将深入探讨HBase性能优化的各种策略,旨在帮助你提升数据操作的效率。 一、硬件优化 1. **磁盘选择**:HBase对I/O性能要求较高,因此推荐使用SSD硬盘,以减少读写延迟。 2. **内存配置**:合理分配HBase的堆...
总结来说,HBase写性能优化可以从多个方面入手,包括调整WAL写入机制、使用批量操作、合理分配Region、保证请求均衡以及控制KeyValue大小。每个策略都有其适用的业务场景和优势,系统管理员和开发者应根据实际需求和...
### Hadoop集群(第12期副刊)-HBase性能优化 #### 一、从配置角度优化HBase性能 **1.1 修改Linux配置** Linux系统默认的最大可打开文件数通常设定为1024个,这对于大多数应用场景来说可能足够,但在高并发环境下...
4. **HBase的优化策略**:包括表设计、region大小调整、负载均衡、读写优化等,以提高系统性能。 接下来,我们将重点关注“HBase云存储”。在云计算环境中,HBase的优势更加凸显: 1. **云存储的扩展性**:HBase的...
HBase 2.3.3还包括对性能优化、稳定性增强、新的API支持等方面的改进。例如,RegionSplitPolicy优化了区域分裂策略,以提高负载均衡;而Cell级别的ACL增强了数据安全性。 总结来说,Linux上的HBase 2.3.3是一个强大...
实验旨在让参与者熟练掌握HBase的Shell操作,包括创建表、输入数据以及进行特定查询。以下是详细步骤及知识点解析: ### 1. HBase Shell基础 HBase Shell是HBase提供的命令行界面,用户可以通过它来与HBase集群...
HBase是Apache Hadoop生态系统中的一个分布式、版本化、列族式存储系统,设计用于处理大规模数据集。这个“hbase-2.4.17-bin”...通过理解并掌握上述概念、安装步骤及操作方法,用户可以有效地利用HBase处理海量数据。
总结,HBase 2.5.6作为最新的版本,持续致力于提升性能、稳定性、安全性及易用性,以满足大数据处理的挑战。无论是对于实时分析、大规模数据存储还是复杂的查询需求,HBase都是一个值得信赖的解决方案。在使用HBase ...
- **高性能**:通过内存缓存、索引优化以及并行处理技术,HBase能够在海量数据集上提供快速的数据访问速度。 - **面向列存储**:HBase采用了列族存储模型,这使得它在查询特定列数据时具有很高的效率。 - **可扩展性...
**HBase学习总结** HBase,全称是Apache HBase,是一个分布式的、面向列的开源数据库,它是基于Google的Bigtable模型构建的,专为处理海量数据而设计。HBase是Apache Hadoop生态系统的一部分,它运行在Hadoop分布式...
2. 性能优化:合理设计RowKey,避免热点问题;使用HBase的Compaction和Split机制,保持Region的平衡;并考虑使用二级索引提高查询效率。 六、总结 通过SpringBoot搭建的HBase可视化系统,使得非技术人员也能便捷地...
### HBase常见错误及解决方案:3年运维经验总结 #### 一、配置第三方依赖包HADOOP_CLASSPATH和HBase问题 **问题描述** 在本地开发HBase程序时,虽然本地编译能够通过(因为在IDE中已经导入了必要的jar包),但在...
4. **HBase性能优化**:书中详细分析了HBase的性能瓶颈,并提供了多种优化策略,如Region划分、负载均衡、缓存管理等,以提升系统的读写性能和响应速度。 5. **HBase与Hadoop集成**:由于HBase是Hadoop生态系统的一...
### HBase在淘宝的应用与优化 #### 一、HBase简介及优势 HBase是一个开源的、分布式的、面向列的存储系统,它基于Google的BigTable论文设计而成。HBase利用Hadoop HDFS作为其文件系统,支持大规模的数据存储,并...
总结来说,“hbase-1.2.7-bin.tar.gz”是一个完整的HBase发行版,它提供了在分布式环境下存储和管理大规模结构化数据的能力。通过理解其核心概念和工作原理,以及掌握安装和使用方法,我们可以有效地利用HBase处理...
9. HBase的预分区设计是为了优化表的分布和读写性能,合理地设置分区可以避免数据倾斜和热点问题,使得数据能够均匀分布在不同的RegionServer上。 10. HBase的rowkey设计技巧包括rowkey的长度原则、散列原则和唯一...