`
huangxueyong
  • 浏览: 1817 次
  • 性别: Icon_minigender_1
  • 来自: 西安
文章分类
社区版块
存档分类
最新评论

hbase优化总结一

阅读更多
来自:
http://blog.csdn.net/rzhzhz/article/details/7481674


因官方Book Performance Tuning部分章节没有按配置项进行索引,不能达到快速查阅的效果。所以我以配置项驱动,重新整理了原文,并补充一些自己的理解,如有错误,欢迎指正。
配置优化
zookeeper.session.timeout
默认值:3分钟(180000ms)
说明:RegionServer与Zookeeper间的连接超时时间。当超时时间到后,ReigonServer会被Zookeeper从RS集群清单中移除,HMaster收到移除通知后,会对这台server负责的regions重新balance,让其他存活的RegionServer接管.
调优:
这个timeout决定了RegionServer是否能够及时的failover。设置成1分钟或更低,可以减少因等待超时而被延长的failover时间。
不过需要注意的是,对于一些Online应用,RegionServer从宕机到恢复时间本身就很短的(网络闪断,crash等故障,运维可快速介入),如果调低timeout时间,反而会得不偿失。因为当ReigonServer被正式从RS集群中移除时,HMaster就开始做balance了(让其他RS根据故障机器记录的WAL日志进行恢复)。当故障的RS在人工介入恢复后,这个balance动作是毫无意义的,反而会使负载不均匀,给RS带来更多负担。特别是那些固定分配regions的场景。

hbase.regionserver.handler.count
默认值:10
说明:RegionServer的请求处理IO线程数。
调优:
这个参数的调优与内存息息相关。
较少的IO线程,适用于处理单次请求内存消耗较高的Big PUT场景(大容量单次PUT或设置了较大cache的scan,均属于Big PUT)或ReigonServer的内存比较紧张的场景。
较多的IO线程,适用于单次请求内存消耗低,TPS要求非常高的场景。设置该值的时候,以监控内存为主要参考。
这里需要注意的是如果server的region数量很少,大量的请求都落在一个region上,因快速充满memstore触发flush导致的读写锁会影响全局TPS,不是IO线程数越高越好。
压测时,开启Enabling RPC-level logging,可以同时监控每次请求的内存消耗和GC的状况,最后通过多次压测结果来合理调节IO线程数。
这里是一个案例?Hadoop and HBase Optimization for Read Intensive Search Applications,作者在SSD的机器上设置IO线程数为100,仅供参考。
hbase.hregion.max.filesize
默认值:256M
说明:在当前ReigonServer上单个Reigon的最大存储空间,单个Region超过该值时,这个Region会被自动split成更小的region。
调优:
小region对split和compaction友好,因为拆分region或compact小region里的storefile速度很快,内存占用低。缺点是split和compaction会很频繁。
特别是数量较多的小region不停地split, compaction,会导致集群响应时间波动很大,region数量太多不仅给管理上带来麻烦,甚至会引发一些Hbase的bug。
一般512以下的都算小region。
大region,则不太适合经常split和compaction,因为做一次compact和split会产生较长时间的停顿,对应用的读写性能冲击非常大。此外,大region意味着较大的storefile,compaction时对内存也是一个挑战。
当然,大region也有其用武之地。如果你的应用场景中,某个时间点的访问量较低,那么在此时做compact和split,既能顺利完成split和compaction,又能保证绝大多数时间平稳的读写性能。
既然split和compaction如此影响性能,有没有办法去掉?
compaction是无法避免的,split倒是可以从自动调整为手动。
只要通过将这个参数值调大到某个很难达到的值,比如100G,就可以间接禁用自动split(RegionServer不会对未到达100G的region做split)。
再配合RegionSplitter这个工具,在需要split时,手动split。
手动split在灵活性和稳定性上比起自动split要高很多,相反,管理成本增加不多,比较推荐online实时系统使用。
内存方面,小region在设置memstore的大小值上比较灵活,大region则过大过小都不行,过大会导致flush时app的IO wait增高,过小则因store file过多影响读性能。
hbase.regionserver.global.memstore.upperLimit/lowerLimit
默认值:0.4/0.35
upperlimit说明:hbase.hregion.memstore.flush.size 这个参数的作用是当单个Region内所有的memstore大小总和超过指定值时,flush该region的所有memstore。RegionServer的flush是通过将请求添加一个队列,模拟生产消费模式来异步处理的。那这里就有一个问题,当队列来不及消费,产生大量积压请求时,可能会导致内存陡增,最坏的情况是触发OOM。
这个参数的作用是防止内存占用过大,当ReigonServer内所有region的memstores所占用内存总和达到heap的40%时,HBase会强制block所有的更新并flush这些region以释放所有memstore占用的内存。
lowerLimit说明: 同upperLimit,只不过lowerLimit在所有region的memstores所占用内存达到Heap的35%时,不flush所有的memstore。它会找一个memstore内存占用最大的region,做个别flush,此时写更新还是会被block。lowerLimit算是一个在所有region强制flush导致性能降低前的补救措施。在日志中,表现为 “** Flush thread woke up with memory above low water.”
调优:这是一个Heap内存保护参数,默认值已经能适用大多数场景。
参数调整会影响读写,如果写的压力大导致经常超过这个阀值,则调小读缓存hfile.block.cache.size增大该阀值,或者Heap余量较多时,不修改读缓存大小。
如果在高压情况下,也没超过这个阀值,那么建议你适当调小这个阀值再做压测,确保触发次数不要太多,然后还有较多Heap余量的时候,调大hfile.block.cache.size提高读性能。
还有一种可能性是?hbase.hregion.memstore.flush.size保持不变,但RS维护了过多的region,要知道 region数量直接影响占用内存的大小。
hfile.block.cache.size
默认值:0.2
说明:storefile的读缓存占用Heap的大小百分比,0.2表示20%。该值直接影响数据读的性能。
调优:当然是越大越好,如果写比读少很多,开到0.4-0.5也没问题。如果读写较均衡,0.3左右。如果写比读多,果断默认吧。设置这个值的时候,你同时要参考?hbase.regionserver.global.memstore.upperLimit?,该值是memstore占heap的最大百分比,两个参数一个影响读,一个影响写。如果两值加起来超过80-90%,会有OOM的风险,谨慎设置。
hbase.hstore.blockingStoreFiles
默认值:7
说明:在flush时,当一个region中的Store(Coulmn Family)内有超过7个storefile时,则block所有的写请求进行compaction,以减少storefile数量。
调优:block写请求会严重影响当前regionServer的响应时间,但过多的storefile也会影响读性能。从实际应用来看,为了获取较平滑的响应时间,可将值设为无限大。如果能容忍响应时间出现较大的波峰波谷,那么默认或根据自身场景调整即可。
hbase.hregion.memstore.block.multiplier
默认值:2
说明:当一个region里的memstore占用内存大小超过hbase.hregion.memstore.flush.size两倍的大小时,block该region的所有请求,进行flush,释放内存。
虽然我们设置了region所占用的memstores总内存大小,比如64M,但想象一下,在最后63.9M的时候,我Put了一个200M的数据,此时memstore的大小会瞬间暴涨到超过预期的hbase.hregion.memstore.flush.size的几倍。这个参数的作用是当memstore的大小增至超过hbase.hregion.memstore.flush.size 2倍时,block所有请求,遏制风险进一步扩大。
调优: 这个参数的默认值还是比较靠谱的。如果你预估你的正常应用场景(不包括异常)不会出现突发写或写的量可控,那么保持默认值即可。如果正常情况下,你的写请求量就会经常暴长到正常的几倍,那么你应该调大这个倍数并调整其他参数值,比如hfile.block.cache.size和hbase.regionserver.global.memstore.upperLimit/lowerLimit,以预留更多内存,防止HBase server OOM。
hbase.hregion.memstore.mslab.enabled
默认值:true
说明:减少因内存碎片导致的Full GC,提高整体性能。
调优:详见 http://kenwublog.com/avoid-full-gc-in-hbase-using-arena-allocation
其他
启用LZO压缩
LZO对比Hbase默认的GZip,前者性能较高,后者压缩比较高,具体参见?Using LZO Compression 。对于想提高HBase读写性能的开发者,采用LZO是比较好的选择。对于非常在乎存储空间的开发者,则建议保持默认。
不要在一张表里定义太多的Column Family
Hbase目前不能良好的处理超过包含2-3个CF的表。因为某个CF在flush发生时,它邻近的CF也会因关联效应被触发flush,最终导致系统产生更多IO。
批量导入
在批量导入数据到Hbase前,你可以通过预先创建regions,来平衡数据的负载。详见?Table Creation: Pre-Creating Regions
避免CMS concurrent mode failure
HBase使用CMS GC。默认触发GC的时机是当年老代内存达到90%的时候,这个百分比由 -XX:CMSInitiatingOccupancyFraction=N 这个参数来设置。concurrent mode failed发生在这样一个场景:
当年老代内存达到90%的时候,CMS开始进行并发垃圾收集,于此同时,新生代还在迅速不断地晋升对象到年老代。当年老代CMS还未完成并发标记时,年老代满了,悲剧就发生了。CMS因为没内存可用不得不暂停mark,并触发一次stop the world(挂起所有jvm线程),然后采用单线程拷贝方式清理所有垃圾对象。这个过程会非常漫长。为了避免出现concurrent mode failed,建议让GC在未到90%时,就触发。
通过设置?-XX:CMSInitiatingOccupancyFraction=N
这个百分比, 可以简单的这么计算。如果你的?hfile.block.cache.size 和?hbase.regionserver.global.memstore.upperLimit 加起来有60%(默认),那么你可以设置 70-80,一般高10%左右差不多。

hbase.balancer.period
hbase自身进行balance操作的间隔时间,默认为300000,以依情况而定。也可关闭,通过对region的监控,手动调整region。


hbase.client.pause
client在写时会进行多次的重试,重试的间隔采用的是指数避让的方法,间隔时间为1秒,即为1000,
在默认10次重试的情况下,就会是这样的间隔时间:[1,1,1,2,2,4,4,8,16,32],
从这可以看出当server出现异常时会导致client长时间的等待,因此可以将client的重试间隔时间调短为20ms


hbase.hregion.max.filesize
如果region是手动split,建议大小在100G或者更大(设置一个不可达到的值),如果是自动split,建议在1G-2G之间

Hbase客户端优化
AutoFlush
将HTable的setAutoFlush设为false,可以支持客户端批量更新。即当Put填满客户端flush缓存时,才发送到服务端。
默认是true。
Scan Caching
scanner一次缓存多少数据来scan(从服务端一次抓多少数据回来scan)。
默认值是 1,一次只取一条。
Scan Attribute Selection
scan时建议指定需要的Column Family,减少通信量,否则scan操作默认会返回整个row的所有数据(所有Coulmn Family)。
Close ResultScanners
通过scan取完数据后,记得要关闭ResultScanner,否则RegionServer可能会出现问题(对应的Server资源无法释放)。
Optimal Loading of Row Keys
当你scan一张表的时候,返回结果只需要row key(不需要CF, qualifier,values,timestaps)时,你可以在scan实例中添加一个filterList,并设置 MUST_PASS_ALL操作,filterList中add?FirstKeyOnlyFilter或KeyOnlyFilter。这样可以减少网络通信量。
Turn off WAL on Puts
当Put某些非重要数据时,你可以设置writeToWAL(false),来进一步提高写性能。writeToWAL(false)会在Put时放弃写WAL log。风险是,当RegionServer宕机时,可能你刚才Put的那些数据会丢失,且无法恢复。
启用Bloom Filter
Bloom Filter通过空间换时间,提高读操作性能。
最后,感谢嬴北望同学对”hbase.hregion.memstore.flush.size”和“hbase.hstore.blockingStoreFiles”错误观点的修正。
本文转自:http://kenwublog.com/hbase-performance-tuning


提升hbase性能的几个地方(转载)
1、使用bloomfilter和mapfile_index_interval
Bloomfilter(开启/未开启=1/0) mapfile_index_interval Exists(0-10000)/ms Get(10001 - 20000)/ms
0 128 22460 23715
0 0 11897 11416
0 64 13692 14034
1 128 3275 3686
1 64 2961 3010
1 0 3339 3498
测试环境为:单机,规模为10万条数据。随机在10000条数据中有99条存在的情况下。
结论:开启bloomfilter比没开启要快3、4倍。而适当的减少mapfile_index_interval可以提升性能




















注意:在1.9.3版本的hbase中,bloomfilter是不支持的,存在一个bug,可以通过如下的修改加以改正:
    (1)、在方法org.apache.hadoop.hbase.regionserver.HStore.createReaders()中,找到如下行
    BloomFilterMapFile.Reader reader = file.getReader(fs, false, false);
    将其改成
    BloomFilterMapFile.Reader reader = file.getReader(fs, this.family.isBloomfilter(), false);
    (2)、在方法org.apache.hadoop.hbase.HColumnDescriptor.toString()中,找到如下的代码行
      if (key != null && key.toUpperCase().equals(BLOOMFILTER)) {
        // Don't emit bloomfilter.  Its not working.
        continue;
      }
    将其注释掉

2、hbase对于内存有特别的嗜好,在硬件允许的情况下配足够多的内存给它。
    通过修改hbase-env.sh中的
    export HBASE_HEAPSIZE=3000 #这里默认为1000m

3、修改java虚拟机属性
    (1)、在环境允许的情况下换64位的虚拟机
    (2)、替换掉默认的垃圾回收器,因为默认的垃圾回收器在多线程环境下会有更多的wait等待
    export HBASE_OPTS="-server -XX:NewSize=6m -XX:MaxNewSize=6m -XX:+UseConcMarkSweepGC -XX:+CMSIncrementalMode"

4、增大RPC数量
    通过修改hbase-site.xml中的   
    hbase.regionserver.handler.count属性,可以适当的放大。默认值为10有点小

5、做程序开发是注意的地方
    (1)、需要判断所求的数据行是否存在时,尽量不要用HTable.exists(final byte [] row) 而用HTable.exists(final byte [] row, final byte[] column)等带列族的方法替代。
    (2)、不要使用HTable.get(final byte [] row, final byte [] column) == null来判断所求的数据存在,而是用HTable.exists(final byte [] row, final byte[] column)替代
    (3)、HTable.close()方法少用.因为我遇到过一些很令人费解的错误

6、记住HBase是基于列模式的存储,如果一个列族能搞定就不要把它分开成两个,关系数据库的那套在这里很不实用.分成多个列来存储会浪费更多的空间,除非你认为现在的硬盘和白菜一个价。

7、如果数据量没有达到TB级别或者没有上亿条记录,很难发挥HBase的优势,建议换关系数据库或别的存储技术。
分享到:
评论

相关推荐

    hbase优化总结

    hbase优化总结 HBase 是一个基于列存储的 NoSQL 数据库,广泛应用于大数据存储和处理领域。然而,在实际应用中,HBase 的性能优化变得至关重要。本文档旨在总结 HBase 的优化方法,对项目中使用 HBase 的调优提供...

    HBase性能优化方法总结

    综上所述,HBase性能优化是一个综合性的任务,涉及硬件配置、数据模型设计、查询策略、运维管理等多个方面。只有全方位考虑并实践这些策略,才能最大化发挥HBase的性能潜力,满足大数据时代下的高效率需求。

    Hbase学习总结.rar

    ### 四、HBase优化 1. **行键设计**:合理设计行键,避免热点问题,例如使用反向时间戳+哈希值的方式。 2. **列族和列的设计**:减少列族数量,控制列的数量,降低内存开销。 3. **缓存配置**:调整BlockCache和...

    Hbase个人总结

    - **高性能**:通过内存缓存、索引优化以及并行处理技术,HBase能够在海量数据集上提供快速的数据访问速度。 - **面向列存储**:HBase采用了列族存储模型,这使得它在查询特定列数据时具有很高的效率。 - **可扩展性...

    Hbase总结.docx

    在HBase这种分布式列式数据库中,Rowkey的设计至关重要,因为它直接影响着数据的分布和查询效率。...通过以上这些方法,可以有效地管理和优化HBase系统,提高其在大数据环境下的处理能力和稳定性。

    HBase总结(超详细)

    分数不让我设定(最好是0)包含原理概念、架构、单机安装、分布式安装,HBase的优化及Phoenixd的一点拓展知识,二叉树,B树等等。。

    HBase写性能优化策略

    总结来说,HBase写性能优化可以从多个方面入手,包括调整WAL写入机制、使用批量操作、合理分配Region、保证请求均衡以及控制KeyValue大小。每个策略都有其适用的业务场景和优势,系统管理员和开发者应根据实际需求和...

    2018HBase技术总结

    HBase2.0版本中引入的新功能,比如AssignmentManagerV2、高可用读RegionReplica、修复工具HBCK2、In-Memory Compaction、Coprocessor的实现与应用等,都是为了进一步优化HBase的性能和稳定性。同时,HBase的RowKey...

    超全的HBase知识体系总结.pdf

    而HBase在HDFS之上构建了一个面向列的数据存储层,使得随机读写性能得到了优化。 2. HBase与传统关系型数据库(RDBMS)相比,在数据模型、存储方式、扩展性等方面都有显著差异。关系型数据库通常有固定的表格结构,...

    HBase在淘宝的应用和优化

    - **0.90.x版本**:2011年1月发布的0.90.0版本成为HBase应用的一个重要里程碑,该版本加入了众多新特性,如Bloom Filter等,显著提升了性能。 - **ZooKeeper集成**:0.20.0版本引入了ZooKeeper来管理BackupMaster...

    hbase-2.4.17-bin 安装包

    五、HBase优化与扩展 1. Region分裂与合并:随着数据增长,Region会自动分裂,保持大小均衡。必要时,可以手动合并Region。 2. RegionServer负载均衡:Master节点负责RegionServer间的负载均衡,调整Region分布以...

    \"HBase_介绍和HBase云存储\"分享总结

    在本分享总结中,我们将深入探讨“HBase_介绍”和“HBase云存储”的相关主题,这将涵盖HBase的基础知识、其架构原理、在云计算环境中的应用以及相关的源码解析。首先,我们从HBase的基本概念和功能入手。 HBase是一...

    Hbase实验报告.pdf

    HBase查询优化 在实际应用中,由于HBase的分布式特性,查询性能依赖于良好的Row Key设计。合理规划Row Key,可以提高数据访问速度和空间效率。此外,可以使用Scan操作进行范围查询,或通过Filter进行更复杂的过滤...

    hbase社区2018精选资料

    HBase社区2018精选资料的知识点涵盖了HBase生态系统的多个方面,包括HBase的基本概念、架构、组件、应用案例...HBase社区资料不仅总结了过去一年的技术发展,也为我们提供了如何在未来继续优化和使用HBase的宝贵信息。

Global site tag (gtag.js) - Google Analytics