`

贝叶斯推断及其互联网应用:过滤垃圾邮件

阅读更多
引用一篇文章:
贝叶斯推断及其互联网应用

1、什么是贝叶斯过滤器?
垃圾邮件是一种令人头痛的顽症,困扰着所有的互联网用户。
正确识别垃圾邮件的技术难度非常大。传统的垃圾邮件过滤方法,主要有"关键词法"和"校验码法"等。前者的过滤依据是特定的词语;后者则是计算邮件文本的校验码,再与已知的垃圾邮件进行对比。它们的识别效果都不理想,而且很容易规避。
2002年,Paul Graham提出使用"贝叶斯推断"过滤垃圾邮件。他说,这样做的效果,好得不可思议。1000封垃圾邮件可以过滤掉995封,且没有一个误判。
另外,这种过滤器还具有自我学习的功能,会根据新收到的邮件,不断调整。收到的垃圾邮件越多,它的准确率就越高。

2、建立历史资料库
贝叶斯过滤器是一种统计学过滤器,建立在已有的统计结果之上。所以,我们必须预先提供两组已经识别好的邮件,一组是正常邮件,另一组是垃圾邮件。
我们用这两组邮件,对过滤器进行"训练"。这两组邮件的规模越大,训练效果就越好。Paul Graham使用的邮件规模,是正常邮件和垃圾邮件各4000封。
"训练"过程很简单。首先,解析所有邮件,提取每一个词。然后,计算每个词语在正常邮件和垃圾邮件中的出现频率。比如,我们假定"sex"这个词,在4000封垃圾邮件中,有200封包含这个词,那么它的出现频率就是5%;而在4000封正常邮件中,只有2封包含这个词,那么出现频率就是0.05%。(【注释】如果某个词只出现在垃圾邮件中,Paul Graham就假定,它在正常邮件的出现频率是1%,反之亦然。这样做是为了避免概率为0。随着邮件数量的增加,计算结果会自动调整。)
有了这个初步的统计结果,过滤器就可以投入使用了。

3、贝叶斯过滤器的使用过程
现在,我们收到了一封新邮件。在未经统计分析之前,我们假定它是垃圾邮件的概率为50%。(【注释】有研究表明,用户收到的电子邮件中,80%是垃圾邮件。但是,这里仍然假定垃圾邮件的"先验概率"为50%。)
我们用S表示垃圾邮件(spam),H表示正常邮件(healthy)。因此,P(S)和P(H)的先验概率,都是50%。



然后,对这封邮件进行解析,发现其中包含了sex这个词,请问这封邮件属于垃圾邮件的概率有多高?
我们用W表示"sex"这个词,那么问题就变成了如何计算P(S|W)的值,即在某个词语(W)已经存在的条件下,垃圾邮件(S)的概率有多大。
根据条件概率公式,马上可以写出



公式中,P(W|S)和P(W|H)的含义是,这个词语在垃圾邮件和正常邮件中,分别出现的概率。这两个值可以从历史资料库中得到,对sex这个词来说,上文假定它们分别等于5%和0.05%。另外,P(S)和P(H)的值,前面说过都等于50%。所以,马上可以计算P(S|W)的值:



因此,这封新邮件是垃圾邮件的概率等于99%。这说明,sex这个词的推断能力很强,将50%的"先验概率"一下子提高到了99%的"后验概率"。

4、联合概率的计算
做完上面一步,请问我们能否得出结论,这封新邮件就是垃圾邮件?
回答是不能。因为一封邮件包含很多词语,一些词语(比如sex)说这是垃圾邮件,另一些说这不是。你怎么知道以哪个词为准?
Paul Graham的做法是,选出这封信中P(S|W)最高的15个词,计算它们的联合概率。(【注释】如果有的词是第一次出现,无法计算P(S|W),Paul Graham就假定这个值等于0.4。因为垃圾邮件用的往往都是某些固定的词语,所以如果你从来没见过某个词,它多半是一个正常的词。)
所谓联合概率,就是指在多个事件发生的情况下,另一个事件发生概率有多大。比如,已知W1和W2是两个不同的词语,它们都出现在某封电子邮件之中,那么这封邮件是垃圾邮件的概率,就是联合概率。
在已知W1和W2的情况下,无非就是两种结果:垃圾邮件(事件E1)或正常邮件(事件E2)。



其中,W1、W2和垃圾邮件的概率分别如下:



如果假定所有事件都是独立事件(【注释】严格地说,这个假定不成立,但是这里可以忽略),那么就可以计算P(E1)和P(E2):






又由于在W1和W2已经发生的情况下,垃圾邮件的概率等于下面的式子:







将P(S)等于0.5代入,得到



将P(S|W1)记为P1,P(S|W2)记为P2,公式就变成





这就是联合概率的计算公式。如果你不是很理解,点击这里查看更多的解释。

5、最终的计算公式
将上面的公式扩展到15个词的情况,就得到了最终的概率计算公式:




一封邮件是不是垃圾邮件,就用这个式子进行计算。这时我们还需要一个用于比较的门槛值。Paul Graham的门槛值是0.9,概率大于0.9,表示15个词联合认定,这封邮件有90%以上的可能属于垃圾邮件;概率小于0.9,就表示是正常邮件。
有了这个公式以后,一封正常的信件即使出现sex这个词,也不会被认定为垃圾邮件了。


实现代码:
/**
 * 
 * 描述: 推断概率.
 * @author
 *
 */
public class InferProbability {
    private static final double HALF_RATE = 0.5;
    
    /**
     * 计算条件概率.
     * P(S|W) = P(W|S)P(S)/(P(W|S)P(S) + P(W|H)P(H))
     * @param sRate 带判断类别的概率
     * @param hRate 另一个类别的概率
     * @return 概率
     */
    public static double calculateConditionProbability(double sRate, double hRate) {
        return sRate * HALF_RATE / (sRate * HALF_RATE + hRate * HALF_RATE);
    }
    
    /**
     * 计算联合概率.
     * 标记 P(S|W1) 为 P1 , 以此类推
     * P = P1P2...P5/(P1P2...P5 + (1-P1)(1-P2)...(1-P5))
     * @param array 数据列表
     * @param maxCnt 取数据从大到小个数
     * @return 概率
     */
    public static double calculateUnionProbability(Double[] array, int maxCnt) {
        double divisor = 0;
        double dividend = 0;
        for (int i = array.length - 1; i >= 0; i--) {
            if ((maxCnt - 1) < 0) {
                break;
            }

            if (divisor == 0) {
                divisor = array[i];
            } else {
                divisor *= array[i];
            }

            if (dividend == 0) {
                dividend = 1 - array[i];
            } else {
                dividend *= 1 - array[i];
            }
        }
        dividend += divisor;

        if (0 == dividend) {
            return 0;
        }

        return divisor / dividend;
    }
}

测试方法:

    // 获取垃圾的概率
    public double calculate(String content, int maxCnt, double maxRate, String sclazz, String hclazz) throws IOException {
        List<String> splitContent = this.ikAnalyzerHandle.getResult(content); // 获取content的分词结果
        Set<Double> lastSet = new TreeSet<Double>();
        for (String tmp : splitContent) {
            double sRate = 0.002; // 获取垃圾的概率
            double hRate = 0.0006; // 获取健康的概率
            if (0 == sRate) {
                lastSet.add(UNKNOWN_RATE_DEF);
            } else {
                lastSet.add(InferProbability.calculateConditionProbability(sRate, hRate));
            }
        }

        // last
        double union = -1;
        if (lastSet.size() > 0) {
            union = InferProbability.calculateUnionProbability(lastSet.toArray(new Double[0]), maxCnt);
        }

        return union;
    }


  • 大小: 7.3 KB
  • 大小: 14.5 KB
  • 大小: 17.8 KB
  • 大小: 8.6 KB
  • 大小: 8.6 KB
  • 大小: 11.9 KB
  • 大小: 15.4 KB
  • 大小: 6.1 KB
  • 大小: 20.5 KB
  • 大小: 17.5 KB
  • 大小: 17.5 KB
  • 大小: 7.1 KB
  • 大小: 11 KB
分享到:
评论

相关推荐

    贝叶斯推断及其互联网应用.doc

    贝叶斯过滤器在互联网应用中,特别是在电子邮件过滤垃圾邮件方面,发挥了重要作用。垃圾邮件过滤器通过收集已知的垃圾邮件和非垃圾邮件,运用贝叶斯定理来计算新邮件是垃圾邮件的概率。每个单词被视为一个特征,过滤...

    《数据结构》(02331)基础概念

    内容概要:本文档《数据结构》(02331)第一章主要介绍数据结构的基础概念,涵盖数据与数据元素的定义及其特性,详细阐述了数据结构的三大要素:逻辑结构、存储结构和数据运算。逻辑结构分为线性结构(如线性表、栈、队列)、树形结构(涉及根节点、父节点、子节点等术语)和其他结构。存储结构对比了顺序存储和链式存储的特点,包括访问方式、插入删除操作的时间复杂度以及空间分配方式,并介绍了索引存储和散列存储的概念。最后讲解了抽象数据类型(ADT)的定义及其组成部分,并探讨了算法分析中的时间复杂度计算方法。 适合人群:计算机相关专业学生或初学者,对数据结构有一定兴趣并希望系统学习其基础知识的人群。 使用场景及目标:①理解数据结构的基本概念,掌握逻辑结构和存储结构的区别与联系;②熟悉不同存储方式的特点及应用场景;③学会分析简单算法的时间复杂度,为后续深入学习打下坚实基础。 阅读建议:本章节内容较为理论化,建议结合实际案例进行理解,尤其是对于逻辑结构和存储结构的理解要深入到具体的应用场景中,同时可以尝试编写一些简单的程序来加深对抽象数据类型的认识。

    【工业自动化】施耐德M580 PLC系统架构详解:存储结构、硬件配置与冗余设计

    内容概要:本文详细介绍了施耐德M580系列PLC的存储结构、系统硬件架构、上电写入程序及CPU冗余特性。在存储结构方面,涵盖拓扑寻址、Device DDT远程寻址以及寄存器寻址三种方式,详细解释了不同类型的寻址方法及其应用场景。系统硬件架构部分,阐述了最小系统的构建要素,包括CPU、机架和模块的选择与配置,并介绍了常见的系统拓扑结构,如简单的机架间拓扑和远程子站以太网菊花链等。上电写入程序环节,说明了通过USB和以太网两种接口进行程序下载的具体步骤,特别是针对初次下载时IP地址的设置方法。最后,CPU冗余部分重点描述了热备功能的实现机制,包括IP通讯地址配置和热备拓扑结构。 适合人群:从事工业自动化领域工作的技术人员,特别是对PLC编程及系统集成有一定了解的工程师。 使用场景及目标:①帮助工程师理解施耐德M580系列PLC的寻址机制,以便更好地进行模块配置和编程;②指导工程师完成最小系统的搭建,优化系统拓扑结构的设计;③提供详细的上电写入程序指南,确保程序下载顺利进行;④解释CPU冗余的实现方式,提高系统的稳定性和可靠性。 其他说明:文中还涉及一些特殊模块的功能介绍,如定时器事件和Modbus串口通讯模块,这些内容有助于用户深入了解M580系列PLC的高级应用。此外,附录部分提供了远程子站和热备冗余系统的实物图片,便于用户直观理解相关概念。

    某型自动垂直提升仓储系统方案论证及关键零部件的设计.zip

    某型自动垂直提升仓储系统方案论证及关键零部件的设计.zip

    2135D3F1EFA99CB590678658F575DB23.pdf#page=1&view=fitH

    2135D3F1EFA99CB590678658F575DB23.pdf#page=1&view=fitH

    agentransack文本搜索软件

    可以搜索文本内的内容,指定目录,指定文件格式,匹配大小写等

    Windows 平台 Android Studio 下载与安装指南.zip

    Windows 平台 Android Studio 下载与安装指南.zip

    Android Studio Meerkat 2024.3.1 Patch 1(android-studio-2024.3.1.14-windows-zip.zip.002)

    Android Studio Meerkat 2024.3.1 Patch 1(android-studio-2024.3.1.14-windows.zip)适用于Windows系统,文件使用360压缩软件分割成两个压缩包,必须一起下载使用: part1: https://download.csdn.net/download/weixin_43800734/90557033 part2: https://download.csdn.net/download/weixin_43800734/90557035

    4-3-台区智能融合终端功能模块技术规范(试行).pdf

    国网台区终端最新规范

    4-13-台区智能融合终端软件检测规范(试行).pdf

    国网台区终端最新规范

    【锂电池剩余寿命预测】Transformer-GRU锂电池剩余寿命预测(Matlab完整源码和数据)

    1.【锂电池剩余寿命预测】Transformer-GRU锂电池剩余寿命预测(Matlab完整源码和数据) 2.数据集:NASA数据集,已经处理好,B0005电池训练、B0006测试; 3.环境准备:Matlab2023b,可读性强; 4.模型描述:Transformer-GRU在各种各样的问题上表现非常出色,现在被广泛使用。 5.领域描述:近年来,随着锂离子电池的能量密度、功率密度逐渐提升,其安全性能与剩余使用寿命预测变得愈发重要。本代码实现了Transformer-GRU在该领域的应用。 6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

    基于android的家庭收纳App的设计与实现.zip

    Android项目原生java语言课程设计,包含LW+ppt

    大学生入门前端-五子棋vue项目

    大学生入门前端-五子棋vue项目

    二手车分析完整项目,包含源代码和数据集,包含:XGBoost 模型,训练模型代码,数据集包含 10,000 条二手车记录的数据集,涵盖车辆品牌、型号、年份、里程数、发动机缸数、价格等

    这是一个完整的端到端解决方案,用于分析和预测阿联酋(UAE)地区的二手车价格。数据集包含 10,000 条二手车信息,覆盖了迪拜、阿布扎比和沙迦等城市,并提供了精确的地理位置数据。此外,项目还包括一个基于 Dash 构建的 Web 应用程序代码和一个训练好的 XGBoost 模型,帮助用户探索区域市场趋势、预测车价以及可视化地理空间洞察。 数据集内容 项目文件以压缩 ZIP 归档形式提供,包含以下内容: 数据文件: data/uae_used_cars_10k.csv:包含 10,000 条二手车记录的数据集,涵盖车辆品牌、型号、年份、里程数、发动机缸数、价格、变速箱类型、燃料类型、颜色、描述以及销售地点(如迪拜、阿布扎比、沙迦)。 模型文件: models/stacking_model.pkl:训练好的 XGBoost 模型,用于预测二手车价格。 models/scaler.pkl:用于数据预处理的缩放器。 models.py:模型相关功能的实现。 train_model.py:训练模型的脚本。 Web 应用程序文件: app.py:Dash 应用程序的主文件。 callback

    《基于YOLOv8的船舶航行违规并线预警系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip

    资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。

    《基于YOLOv8的工业布匹瑕疵分类系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip

    资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。

    CodeCount.exe

    此为代码审查工具 可查 文件数,字节数,总行数,代码行数,注释行数,空白行数,注释率等

    商业数据分析与Python实现:企业破产概率及抽样技术解析(复现论文或解答问题,含详细可运行代码及解释)

    内容概要:本文档涵盖了一项关于企业破产概率的详细分析任务,分为书面回答和Python代码实现两大部分。第一部分涉及对业务类型和破产状态的边际分布、条件分布及相对风险的计算,并绘制了相应的二维条形图。第二部分利用Python进行了数据处理和可视化,包括计算比值比、识别抽样技术类型、分析鱼类数据集以及探讨辛普森悖论。此外,还提供了针对鱼类和树木数据的统计分析方法。 适合人群:适用于有一定数学和编程基础的学习者,尤其是对统计学、数据分析感兴趣的大学生或研究人员。 使用场景及目标:①帮助学生掌握统计学概念如边际分布、条件分布、相对风险和比值比的实际应用;②教授如何用Python进行数据清洗、分析和可视化;③提高对不同类型抽样技术和潜在偏见的理解。 其他说明:文档不仅包含了理论知识讲解,还有具体的代码实例供读者参考实践。同时提醒读者在完成作业时需要注意提交格式的要求。

    MCP快速入门实战,详细的实战教程

    MCP快速入门实战,详细的实战教程

Global site tag (gtag.js) - Google Analytics