MQTT协议笔记之头部信息
前言
MQTT(Message Queue Telemetry Transport),遥测传输协议,提供订阅/发布模式,更为简约、轻量,易于使用,针对受限环境(带宽低、网络延迟高、网络通信不稳定),可以简单概括为物联网打造,官方总结特点如下:
1.使用发布/订阅消息模式,提供一对多的消息发布,解除应用程序耦合。
2. 对负载内容屏蔽的消息传输。
3. 使用 TCP/IP 提供网络连接。
4. 有三种消息发布服务质量:
“至多一次”,消息发布完全依赖底层 TCP/IP 网络。会发生消息丢失或重复。这一级别可用于如下情况,环境传感器数据,丢失一次读记录无所谓,因为不久后还会有第二次发送。
“至少一次”,确保消息到达,但消息重复可能会发生。
“只有一次”,确保消息到达一次。这一级别可用于如下情况,在计费系统中,消息重复或丢失会导致不正确的结果。
5. 小型传输,开销很小(固定长度的头部是 2 字节),协议交换最小化,以降低网络流量。
6. 使用 Last Will 和 Testament 特性通知有关各方客户端异常中断的机制。
MQTT 3.1协议在线版本: http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
官方下载地址: http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.pdf
PDF版本,42页,不算多。
另外,目前MQTT大家都用在了手机推送,可能还有很多的使用方式,有待进一步的探索。
协议方面,以前曾简单实现过一点HTTP协议,基于HTTP上构建若干种通信管道的socket.io协议,不过socket.io 0.9版本的协议才两三页而已。面对领域不同,自然解决的方式也不一样。
阅读完毕MQTT协议,有一个想法,其实可以基于MQTT协议,打造更加私有、精简(协议一些地方,略显多余)的传输协议,比如一个字节的传输开销。有时间,会详细说一下。
固定头部
固定头部,使用两个字节,共16位:
byte 1 | Message Type | DUP flag | QoS level | RETAIN |
byte 2 | Remaining Length |
第一个字节(byte 1)
消息类型(4-7),使用4位二进制表示,可代表16种消息类型:
Reserved | 0 | Reserved |
CONNECT | 1 | Client request to connect to Server |
CONNACK | 2 | Connect Acknowledgment |
PUBLISH | 3 | Publish message |
PUBACK | 4 | Publish Acknowledgment |
PUBREC | 5 | Publish Received (assured delivery part 1) |
PUBREL | 6 | Publish Release (assured delivery part 2) |
PUBCOMP | 7 | Publish Complete (assured delivery part 3) |
SUBSCRIBE | 8 | Client Subscribe request |
SUBACK | 9 | Subscribe Acknowledgment |
UNSUBSCRIBE | 10 | Client Unsubscribe request |
UNSUBACK | 11 | Unsubscribe Acknowledgment |
PINGREQ | 12 | PING Request |
PINGRESP | 13 | PING Response |
DISCONNECT | 14 | Client is Disconnecting |
Reserved | 15 | Reserved |
除去0和15位置属于保留待用,共14种消息事件类型。
DUP flag(打开标志)
保证消息可靠传输,默认为0,只占用一个字节,表示第一次发送。不能用于检测消息重复发送等。只适用于客户端或服务器端尝试重发PUBLISH, PUBREL, SUBSCRIBE 或 UNSUBSCRIBE消息,注意需要满足以下条件:
当QoS > 0
消息需要回复确认
此时,在可变头部需要包含消息ID。当值为1时,表示当前消息先前已经被传送过。
QoS(Quality of Service,服务质量)
使用两个二进制表示PUBLISH类型消息:
0 | 0 | 0 | 至多一次 | 发完即丢弃 | <=1 |
1 | 0 | 1 | 至少一次 | 需要确认回复 | >=1 |
2 | 1 | 0 | 只有一次 | 需要确认回复 | =1 |
3 | 1 | 1 | 待用,保留位置 |
RETAIN(保持)
仅针对PUBLISH消息。不同值,不同含义:
1:表示发送的消息需要一直持久保存(不受服务器重启影响),不但要发送给当前的订阅者,并且以后新来的订阅了此Topic name的订阅者会马上得到推送。
备注:新来乍到的订阅者,只会取出最新的一个RETAIN flag = 1的消息推送。
0:仅仅为当前订阅者推送此消息。
假如服务器收到一个空消息体(zero-length payload)、RETAIN = 1、已存在Topic name的PUBLISH消息,服务器可以删除掉对应的已被持久化的PUBLISH消息。
如何解析
因为java使用有符号(最高位为符号位)数据表示,byte范围:-128-127。该字节的最高位(左边第一位),可能为1。若直接转换为 byte类型,会出现负数,这是一个雷区。DataInputStream提供了int readUnsignedByte()读取方式,请注意。下面演示了,如何从一个字节中,获取到所有定义的信息,同时绕过雷区:
public static void main(String[] args) {
byte publishFixHeader = 50;// 0 0 1 1 0 0 1 0
doGetBit(publishFixHeader);
int ori = 224;//1110000,DISCONNECT ,Message Type (14)
byte flag = (byte) ori; //有符号byte
doGetBit(flag);
doGetBit_v2(ori);
}
public static void doGetBit(byte flags) {
boolean retain = (flags & 1) > 0;
int qosLevel = (flags & 0x06) >> 1;
boolean dupFlag = (flags & 8) > 0;
int messageType = (flags >> 4) & 0x0f;
System.out.format(
"Message type:%d, DUP flag:%s, QoS level:%d, RETAIN:%s\n",
messageType, dupFlag, qosLevel, retain);
}
public static void doGetBit_v2(int flags) {
boolean retain = (flags & 1) > 0;
int qosLevel = (flags & 0x06) >> 1;
boolean dupFlag = (flags & 8) > 0;
int messageType = flags >> 4;
System.out.format(
"Message type:%d, DUP flag:%s, QoS level:%d, RETAIN:%s\n",
messageType, dupFlag, qosLevel, retain);
}
处理Remaining Length(剩余长度)
在当前消息中剩余的byte(字节)数,包含可变头部和负荷(称之为内容/body,更为合适)。单个字节最大值:01111111,16进 制:0x7F,10进制为127。单个字节为什么不能是11111111(0xFF)呢?因为MQTT协议规定,第八位(最高位)若为1,则表示还有后续 字节存在。同时MQTT协议最多允许4个字节表示剩余长度。那么最大长度为:0xFF,0xFF,0xFF,0x7F,二进制表示 为:11111111,11111111,11111111,01111111,十进制:268435455 byte=261120KB=256MB=0.25GB 四个字节之间值的范围:
1 | 0 (0x00) | 127 (0x7F) |
2 | 128 (0x80, 0x01) | 16 383 (0xFF, 0x7F) |
3 | 16 384 (0x80, 0x80, 0x01) | 2 097 151 (0xFF, 0xFF, 0x7F) |
4 | 2 097 152 (0x80, 0x80, 0x80, 0x01) | 268 435 455 (0xFF, 0xFF, 0xFF, 0x7F) |
如何换算成十进制呢 ? 使用java语言表示如下:
public static void main(String[] args) throws IOException {
// 模拟客户端写入
ByteArrayOutputStream arrayOutputStream = new ByteArrayOutputStream();
DataOutputStream dataOutputStream = new DataOutputStream(arrayOutputStream);
dataOutputStream.write(0xff);
dataOutputStream.write(0xff);
dataOutputStream.write(0xff);
dataOutputStream.write(0x7f);
InputStream arrayInputStream = new ByteArrayInputStream(arrayOutputStream.toByteArray());
// 模拟服务器/客户端解析
System. out.println( "result is " + bytes2Length(arrayInputStream));
}
/**
* 转化字节为 int类型长度
* @param in
* @return
* @throws IOException
*/
private static int bytes2Length(InputStream in) throws IOException {
int multiplier = 1;
int length = 0;
int digit = 0;
do {
digit = in.read(); //一个字节的有符号或者无符号,转换转换为四个字节有符号 int类型
length += (digit & 0x7f) * multiplier;
multiplier *= 128;
} while ((digit & 0x80) != 0);
return length;
}
一般最后一个字节小于127(01111111),和0x80(10000000)进行&操作,最终结果都为0,因此计算会终止。代理中间件和请求者,中间传递的是字节流Stream,自然要从流中读取,逐一解析出来。
那么如何将int类型长度解析为不确定的字节值呢?
public static void main(String[] args) throws IOException {
// 模拟服务器/客户端写入
ByteArrayOutputStream arrayOutputStream = new ByteArrayOutputStream();
DataOutputStream dataOutputStream = new DataOutputStream(
arrayOutputStream);
// 模拟服务器/客户端解析
length2Bytes(dataOutputStream, 128);
}
/**
* int类型长度解析为1-4个字节
* @param out
* @param length
* @throws IOException
*/
private static void length2Bytes(OutputStream out, int length)
throws IOException {
int val = length;
do {
int digit = val % 128;
val = val / 128;
if (val > 0)
digit = digit | 0x80;
out.write(digit);
} while (val > 0);
}
digit对val求模,最大值可能是127,一旦127 | 10000000 = 11111111 = 0xff = 255 请注意:剩余长度,只在固定头部中,无论是一个字节,还是四个字节,不能被算作可变头部中。
可变头部
固定头部仅定义了消息类型和一些标志位,一些消息的元数据,需要放入可变头部中。可变头部内容字节长度 + Playload/负荷字节长度 = 剩余长度,这个是需要牢记的。可变头部,包含了协议名称,版本号,连接标志,用户授权,心跳时间等内容,这部分和后面要讲到的CONNECT消息类型,有 重复,暂时略过。
Playload/消息体/负荷
消息体主要是为配合固定/可变头部命令(比如CONNECT可变头部User name标记若为1则需要在消息体中附加用户名称字符串)而存在。
CONNECT/SUBSCRIBE/SUBACK/PUBLISH等消息有消息体。PUBLISH的消息体以二进制形式对待。
请记住,MQTT协议只允许在PUBLISH类型消息体中使用自定义特性,在固定/可变头部想加入自定义私有特性,就免了吧。这也是为了协议免于流 于形式,变得很分裂也为了兼顾现有客户端等。比如支持压缩等,那就可以在Playload中定义数据支持,在应用中进行读取处理。
这部分会在后面详细论述。
消息标识符/消息ID
固定头中的QoS level标志值为1或2时才会在:PUBLISH,PUBACK,PUBREC,PUBREL,PUBCOMP,SUBSCRIBE,SUBACK,UNSUBSCRIBE,UNSUBACK等消息的可变头中出现。
一个16位无符号位的short类型值(值不能为 0,0做保留作为无效的消息ID),仅仅要求在一个特定方向(服务器发往客户端为一个方向,客户端发送到服务器端为另一个方向)的通信消息中必须唯一。比 如客户端发往服务器,有可能存在服务器发往客户端会同时存在重复,但不碍事。
可变头部中,需要两个字节的顺序是MSB(Most Significant Bit) LSB(Last/Least Significant Bit),翻译成中文就是,最高有效位,最低有效位。最高有效位在最低有效位左边/上面,表示这是一个大端字节/网络字节序,符合人的阅读习惯,高位在最 左边。
Message Identifier MSB | |
Message Identifier LSB |
但凡如此表示的,都可以视为一个16位无符号short类型整数,两个字节表示。在JAVA中处理比较简单:
DataInputStream.readUnsignedShort
或者
in.read() * 0xFF + in.read();
最大长度可为: 65535
UTF-8编码
有关字符串,MQTT采用的是修改版的UTF-8编码,一般形式为如下,需要牢记:
byte 1 | String Length MSB |
byte 2 | String Length LSB |
bytes 3 ... | Encoded Character Data |
比如AVA,使用writeUTF()方法写入一串文字“OTWP”,头两个字节为一个完整的无符号数字,代表字符串字节长度,后面四个字节才是字符串真正的长度,共六个字节:
byte 1 | Message Length MSB (0x00) | |||||||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
byte 2 | Message Length LSB (0x04) | |||||||
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | |
byte 3 | 'O' (0x4F) | |||||||
0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | |
byte 4 | 'T' (0x54) | |||||||
0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | |
byte 5 | 'W' (0x57) | |||||||
0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | |
byte 6 | 'P' (0x50) | |||||||
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
这点,在程序中,可不用单独处理默认,直接使用readUTF()方法,可自动省去了处理字符串长度的麻烦。当然,可以手动读取字符串:
// 模拟写入
dataOutputStream.writeUTF( "abcd");// 2 + 4 = 6 byte
......
// 模拟读取
int decodedLength = dataInputStream.readUnsignedShort();//2 byte
byte[] decodedString = new byte[decodedLength]; // 4 bytes
dataInputStream.read(decodedString);
String target = new String(decodedString, "UTF-8");
等同于:
String target = dataInputStream.readUTF();
MQTT无论是可变头部还是消息体中,只要是字符串部分,都是采用了修改版的UTF-8编码,读取和写入,借助DataInputStream/DataOutputStream的帮助,一行语句,略去了手动处理的麻烦。
小结
总之,掌握固定头部的QoS level、RETAIN标记、可变头部的Connect flags作用和意义,对总体理解MQTT作用很大。
转载自: http://www.blogjava.net/yongboy/archive/2014/02/07/409587.html
相关推荐
MQTT协议笔记-打印版, 来自:聂永的博客 熟读此笔记, 基本上对MQTT协议会很熟悉! 7. MQTT 3.1.1,值得升级的6个新特性 nieyong 2014-12-16 ...1. MQTT协议笔记之头部信息 nieyong 2014-02-07 17:35
* MQTT 头部:Fixed header、Variable header 等信息 在 MQTT 头部中,我们可以看到以下几部分: * Fixed header:包含协议名字长度、协议版本号、消息类型等信息 * Variable header:包含可变报头的长度、Client ...
MQTT协议设计简单,具有低开销和低延迟的特点,使其成为Web实时通信的理想选择。 在JavaScript中,我们可以使用mqtt.js库来与RabbitMQ进行交互。mqtt.js是一个轻量级的客户端库,它提供了API来连接到MQTT服务器,...
基于Maxwell设计的经典280W 4025RPM高效率科尔摩根12极39槽TBM无框力矩电机:生产与学习双重应用案例,基于Maxwell设计的经典280W高转速科尔摩根TBM无框力矩电机:7615系列案例解析与应用实践,基于maxwwell设计的经典280W,4025RPM 内转子 科尔摩根 12极39槽 TBM无框力矩电机,7615系列。 该案例可用于生产,或者学习用,(157) ,maxwell设计; 280W; 4025RPM内转子; 科尔摩根; 12极39槽TBM无框力矩电机; 7615系列; 生产/学习用。,基于Maxwell设计,高功率280W 12极39槽TBM无框力矩电机:生产与学习双用途案例
基于碳交易的微网优化模型的Matlab设计与实现策略分析,基于碳交易的微网优化模型的Matlab设计与实现探讨,考虑碳交易的微网优化模型matlab ,考虑碳交易; 微网优化模型; MATLAB;,基于Matlab的碳交易微网优化模型研究
二级2025模拟试题(答案版)
OpenCV是一个功能强大的计算机视觉库,它提供了多种工具和算法来处理图像和视频数据。在C++中,OpenCV可以用于实现基础的人脸识别功能,包括从摄像头、图片和视频中识别人脸,以及通过PCA(主成分分析)提取图像轮廓。以下是对本资源大体的介绍: 1. 从摄像头中识别人脸:通过使用OpenCV的Haar特征分类器,我们可以实时从摄像头捕获的视频流中检测人脸。这个过程涉及到将视频帧转换为灰度图像,然后使用预训练的Haar级联分类器来识别人脸区域。 2. 从视频中识别出所有人脸和人眼:在视频流中,除了检测人脸,我们还可以进一步识别人眼。这通常涉及到使用额外的Haar级联分类器来定位人眼区域,从而实现对人脸特征的更细致分析。 3. 从图片中检测出人脸:对于静态图片,OpenCV同样能够检测人脸。通过加载图片,转换为灰度图,然后应用Haar级联分类器,我们可以在图片中标记出人脸的位置。 4. PCA提取图像轮廓:PCA是一种统计方法,用于分析和解释数据中的模式。在图像处理中,PCA可以用来提取图像的主要轮廓特征,这对于人脸识别技术中的面部特征提取尤
麻雀搜索算法(SSA)自适应t分布改进版:卓越性能与优化代码注释,适合深度学习。,自适应t分布改进麻雀搜索算法(TSSA)——卓越的学习样本,优化效果出众,麻雀搜索算法(SSA)改进——采用自适应t分布改进麻雀位置(TSSA),优化后明显要优于基础SSA(代码基本每一步都有注释,代码质量极高,非常适合学习) ,TSSA(自适应t分布麻雀位置算法);注释详尽;高质量代码;适合学习;算法改进结果优异;TSSA相比基础SSA。,自适应T分布优化麻雀搜索算法:代码详解与学习首选(TSSA改进版)
锂电池主动均衡Simulink仿真研究:多种均衡策略与电路架构的深度探讨,锂电池主动均衡与多种均衡策略的Simulink仿真研究:buckboost拓扑及多层次电路分析,锂电池主动均衡simulink仿真 四节电池 基于buckboost(升降压)拓扑 (还有传统电感均衡+开关电容均衡+双向反激均衡+双层准谐振均衡+环形均衡器+cuk+耦合电感)被动均衡电阻式均衡 、分层架构式均衡以及分层式电路均衡,多层次电路,充放电。 ,核心关键词: 锂电池; 主动均衡; Simulink仿真; 四节电池; BuckBoost拓扑; 传统电感均衡; 开关电容均衡; 双向反激均衡; 双层准谐振均衡; 环形均衡器; CUK均衡; 耦合电感均衡; 被动均衡; 电阻式均衡; 分层架构式均衡; 多层次电路; 充放电。,锂电池均衡策略研究:Simulink仿真下的多拓扑主动与被动均衡技术
S7-1500和分布式外围系统ET200MP模块数据
内置式永磁同步电机无位置传感器模型:基于滑膜观测器和MTPA技术的深度探究,内置式永磁同步电机基于滑膜观测器和MTPA的无位置传感器模型研究,基于滑膜观测器和MTPA的内置式永磁同步电机无位置传感器模型 ,基于滑膜观测器;MTPA;内置式永磁同步电机;无位置传感器模型,基于滑膜观测与MTPA算法的永磁同步电机无位置传感器模型
centos7操作系统下安装docker,及docker常用命令、在docker中运行nginx示例,包括 1.设置yum的仓库 2.安装 Docker Engine-Community 3.docker使用 4.查看docker进程是否启动成功 5.docker常用命令及nginx示例 6.常见问题
给曙光服务器安装windows2012r2时候找不到磁盘,问厂家工程师要的raid卡驱动,内含主流大多数品牌raid卡驱动
数学建模相关主题资源2
西门子四轴卧式加工中心后处理系统:828D至840D支持,四轴联动制造解决方案,图档处理与试看程序一应俱全。,西门子四轴卧加后处理系统:支持828D至840D系统,四轴联动高精度制造解决方案,西门子四轴卧加后处理,支持828D~840D系统,支持四轴联动,可制制,看清楚联系,可提供图档处理试看程序 ,核心关键词:西门子四轴卧加后处理; 828D~840D系统支持; 四轴联动; 制程; 联系; 图档处理试看程序。,西门子四轴卧加后处理程序,支持多种系统与四轴联动
MATLAB下基于列约束生成法CCG的两阶段鲁棒优化问题求解入门指南:算法验证与经典文献参考,MATLAB下基于列约束生成法CCG的两阶段鲁棒优化问题求解入门指南:算法验证与文献参考,MATLAB代码:基于列约束生成法CCG的两阶段问题求解 关键词:两阶段鲁棒 列约束生成法 CCG算法 参考文档:《Solving two-stage robust optimization problems using a column-and-constraint generation method》 仿真平台:MATLAB YALMIP+CPLEX 主要内容:代码构建了两阶段鲁棒优化模型,并用文档中的相对简单的算例,进行CCG算法的验证,此篇文献是CCG算法或者列约束生成算法的入门级文献,其经典程度不言而喻,几乎每个搞CCG的两阶段鲁棒的人都绕不过此篇文献 ,两阶段鲁棒;列约束生成法;CCG算法;MATLAB;YALMIP+CPLEX;入门级文献。,MATLAB代码实现:基于两阶段鲁棒与列约束生成法CCG的算法验证研究
“生热研究的全面解读:探究参数已配置的Comsol模型中的18650圆柱锂电池表现”,探究已配置参数的COMSOL模型下的锂电池生热现象:18650圆柱锂电池模拟分析,出一个18650圆柱锂电池comsol模型 参数已配置,生热研究 ,出模型; 18650圆柱锂电池; comsol模型; 参数配置; 生热研究,构建18650电池的COMSOL热研究模型
移动端多端运行的知识付费管理系统源码,TP6+Layui+MySQL后端支持,功能丰富,涵盖直播、点播、管理全功能及礼物互动,基于UniApp跨平台开发的移动端知识付费管理系统源码:多端互通、全功能齐备、后端采用TP6与PHP及Layui前端,搭载MySQL数据库与直播、点播、管理、礼物等功能的强大整合。,知识付费管理系统源码,移动端uniApp开发,app h5 小程序一套代码多端运行,后端php(tp6)+layui+MySQL,功能齐全,直播,点播,管理,礼物等等功能应有尽有 ,知识付费;管理系统源码;移动端uniApp开发;多端运行;后端php(tp6);layui;MySQL;直播点播;管理功能;礼物功能,知识付费管理平台:全功能多端运行系统源码(PHP+Layui+MySQL)
基于Python+Django+MySQL的个性化图书推荐系统:协同过滤推荐,智能部署,用户定制功能,基于Python+Django+MySQL的个性化图书推荐系统:协同过滤推荐,智能部署,用户定制功能,Python+Django+Mysql个性化图书推荐系统 图书在线推荐系统 基于用户、项目、内容的协同过滤推荐算法。 帮远程安装部署 一、项目简介 1、开发工具和实现技术 Python3.8,Django4,mysql8,navicat数据库管理工具,html页面,javascript脚本,jquery脚本,bootstrap前端框架,layer弹窗组件、webuploader文件上传组件等。 2、项目功能 前台用户包含:注册、登录、注销、浏览图书、搜索图书、信息修改、密码修改、兴趣喜好标签、图书评分、图书收藏、图书评论、热点推荐、个性化推荐图书等功能; 后台管理员包含:用户管理、图书管理、图书类型管理、评分管理、收藏管理、评论管理、兴趣喜好标签管理、权限管理等。 个性化推荐功能: 无论是否登录,在前台首页展示热点推荐(根据图书被收藏数量降序推荐)。 登录用户,在前台首页展示个性化推荐
STM32企业级锅炉控制器源码分享:真实项目经验,带注释完整源码助你快速掌握实战经验,STM32企业级锅炉控制器源码:真实项目经验,完整注释,助力初学者快速上手,stm32真实企业项目源码 项目要求与网上搜的那些开发板的例程完全不在一个级别,也不是那些凑合性质的项目可以比拟的。 项目是企业级产品的要求开发的,能够让初学者了解真实的企业项目是怎么样的,增加工作经验 企业真实项目网上稀缺,完整源码带注释,适合没有参与工作或者刚学stm32的增加工作经验, 这是一个锅炉的控制器,有流程图和程序协议的介绍。 ,stm32源码;企业级项目;工作经验;锅炉控制器;流程图;程序协议,基于STM32的真实企业级锅炉控制器项目源码