`
hongs_yang
  • 浏览: 61277 次
  • 性别: Icon_minigender_1
  • 来自: 西安
社区版块
存档分类
最新评论

minor compaction时的scan操作分析

阅读更多

minor compaction时的scan操作分析

 

minor compaction时的scan主要是对store下的几个storefile文件进行合并,通常不做数据删除操作。

 

compaction的发起通过CompactSplitThread.requestCompactionInternal-->

 

CompactSplitThread.CompactionRunner.run-->region.compact-->HStore.compact

 

-->DefaultStoreEngine.DefaultCompactionContext.compact-->

 

DefaultCompactor.compact

 



 

生成compaction时的StoreScanner

 

1.通过要进行compact的几个storefile生成StoreFileScanner,,以下是生成实例时的方法层次调用

 



 

DefaultCompactor.compact方法中的部分代码,得到每一个storefileStoreFileScanner实例

 

List<StoreFileScanner> scanners = createFileScanners(request.getFiles());

 

protectedList<StoreFileScanner> createFileScanners(

 

finalCollection<StoreFile> filesToCompact) throws IOException {

 

return StoreFileScanner.getScannersForStoreFiles(filesToCompact, false, false, true);

 

}

 

 

 

publicstaticList<StoreFileScanner> getScannersForStoreFiles(

 

Collection<StoreFile> files, booleancacheBlocks, booleanusePread,

 

booleanisCompaction) throws IOException {

 

returngetScannersForStoreFiles(files, cacheBlocks, usePread, isCompaction,

 

null);

 

}

 

在调用此方法时,ScanQueryMatcher传入为null

 

publicstaticList<StoreFileScanner> getScannersForStoreFiles(

 

Collection<StoreFile> files, booleancacheBlocks, booleanusePread,

 

booleanisCompaction, ScanQueryMatcher matcher) throws IOException {

 

List<StoreFileScanner> scanners = newArrayList<StoreFileScanner>(

 

files.size());

 

for (StoreFile file : files) {

 

迭代每一个storefile,生成storefilereader实例,并根据reader生成storefilescanner

 

生成reader实例-->HFile.createReader-->HFileReaderV2-->StoreFile.Reader

 

 

 

StoreFile.Reader r = file.createReader();

 

 

 

每一个StoreFileScanner中包含一个HFileScanner

 

实例生成HFileReaderV2.getScanner-->

 

检查在table的此cf中配置有DATA_BLOCK_ENCODING属性,表示有指定ENCODING,

 

此配置的可选值,请参见DataBlockEncoding(如前缀树等)

 

如果encoding的配置不是NODEHFileScanner的实例生成为HFileReaderV2.EncodedScannerV2

 

否则生成的实例为HFileReaderV2.ScannerV2-->

 

生成StoreFileScanner实例,此实例引用StoreFile.ReaderHFileScanner

 

以下代码中的isCompactiontrue

 

 

 

StoreFileScanner scanner = r.getStoreFileScanner(cacheBlocks, usePread,

 

isCompaction);

 

此时的matchernull

 

scanner.setScanQueryMatcher(matcher);

 

scanners.add(scanner);

 

}

 

returnscanners;

 

}

 

 

 

DefaultCompactor.compact方法中的部分代码,生成StoreScanner实例

 



 

得到一个ScanType为保留删除数据的ScanType,scanType=COMPACT_RETAIN_DELETES

 

ScanTypescanType =

 

request.isMajor() ? ScanType.COMPACT_DROP_DELETES

 

: ScanType.COMPACT_RETAIN_DELETES;

 

scanner = preCreateCoprocScanner(request, scanType, fd.earliestPutTs, scanners);

 

if (scanner == null) {

 

生成一个Scan实例,这个Scan为查询所有版本的Scan,maxVersioncf设置的最大的maxVersion

 

生成StoreScanner实例

 

 

 

scanner = createScanner(store, scanners, scanType, smallestReadPoint, fd.earliestPutTs);

 

}

 

scanner = postCreateCoprocScanner(request, scanType, scanner);

 

if (scanner == null) {

 

// NULL scanner returned from coprocessor hooks means skip normal processing.

 

returnnewFiles;

 

}

 

 

 

生成StoreScanner的构造方法要做和处理流程:代码调用层级如下所示:

 

 

 

protectedInternalScannercreateScanner(Storestore, List<StoreFileScanner> scanners,

 

ScanTypescanType, longsmallestReadPoint, longearliestPutTs) throws IOException {

 

Scan scan = newScan();

 

scan.setMaxVersions(store.getFamily().getMaxVersions());

 

returnnewStoreScanner(store, store.getScanInfo(), scan, scanners,

 

scanType, smallestReadPoint, earliestPutTs);

 

}

 

 

 

publicStoreScanner(Storestore, ScanInfo scanInfo, Scan scan,

 

List<? extendsKeyValueScanner> scanners, ScanTypescanType,

 

longsmallestReadPoint, longearliestPutTs) throws IOException {

 

this(store, scanInfo, scan, scanners, scanType, smallestReadPoint, earliestPutTs, null, null);

 

}

 

 

 

privateStoreScanner(Storestore, ScanInfo scanInfo, Scan scan,

 

List<? extendsKeyValueScanner> scanners, ScanTypescanType, longsmallestReadPoint,

 

longearliestPutTs, byte[] dropDeletesFromRow, byte[] dropDeletesToRow)

 

throws IOException {

 

 

 

调用相关构造方法生成ttl的过期时间,最小版本等信息

 

检查hbase.storescanner.parallel.seek.enable配置是否为true,true表示并行scanner

 

如果是并行scan时,拿到rs中的执行线程池

 

 

 

this(store, false, scan, null, scanInfo.getTtl(),

 

scanInfo.getMinVersions());

 

if (dropDeletesFromRow == null) {

 

此时通过这里生成ScanQueryMatcher实例

 

matcher = newScanQueryMatcher(scan, scanInfo, null, scanType,

 

smallestReadPoint, earliestPutTs, oldestUnexpiredTS);

 

} else {

 

matcher = newScanQueryMatcher(scan, scanInfo, null, smallestReadPoint,

 

earliestPutTs, oldestUnexpiredTS, dropDeletesFromRow, dropDeletesToRow);

 

}

 

 

 

过滤掉bloom filter不存在的storefilescanner,不在时间范围内的scannerttl过期的scanner

 

如果一个storefile中最大的更新时间超过了ttl的设置,那么此storefile已经没用,不用参与scan

 

// Filter the list of scanners using Bloom filters, time range, TTL, etc.

 

scanners = selectScannersFrom(scanners);

 

 

 

如果没有配置并行scanner,迭代把每一个scanner seek到指定的开始key处,由于是compactionscan,默认不seek

 

// Seek all scanners to the initial key

 

if (!isParallelSeekEnabled) {

 

for (KeyValueScannerscanner : scanners) {

 

scanner.seek(matcher.getStartKey());

 

}

 

} else {

 

通过线程池,生成ParallelSeekHandler实例,并行去seek到指定的开始位置

 

parallelSeek(scanners, matcher.getStartKey());

 

}

 

生成一个具体的扫描的scanner,把所有要查找的storefilescanner添加进去,

 

每次的next都需要从不同的scanner里找到最小的一个kv

 

KeyValueHeap中维护一个PriorityQueue的优先级队列,

 

在默认生成此实例时会生成根据如下来检查那一个storefilescanner在队列的前面

 

1.比较两个storefilescanner中最前面的一个kv

 

a.如果rowkey部分不相同直接返回按大小的排序

 

b.如果rowkey部分相同,比较cf/column/type谁更大,

 

c.可参见KeyValue.KVComparator.compare

 

2.如果两个storefilescanner中最小的kv相同,比较谁的storefileseqid更大,返回更大的

 

3.得到当前所有的storefilescanner中最小的kv的一个storefilescannerHeyValueHead.current属性的值

 

 

 

// Combine all seeked scanners with a heap

 

heap = newKeyValueHeap(scanners, store.getComparator());

 

}

 

 

 

KeyValueScanner.seek流程分析:

 

KeyValueScanner的实例StoreFileScanner,调用StoreFileScanner.seek,代码调用层级

 

 

 

publicbooleanseek(KeyValue key) throws IOException {

 

if (seekCount != null) seekCount.incrementAndGet();

 

 

 

try {

 

try {

 

if(!seekAtOrAfter(hfs, key)) {

 

close();

 

returnfalse;

 

}

 

 

 

cur = hfs.getKeyValue();

 

 

 

return !hasMVCCInfo ? true : skipKVsNewerThanReadpoint();

 

} finally {

 

realSeekDone = true;

 

}

 

} catch (IOException ioe) {

 

thrownewIOException("Could not seek " + this + " to key " + key, ioe);

 

}

 

}

 

调用HFileScanner的实现HFileReaderV2.EncodedScannerV2 or HFileReaderV2.ScannerV2seekTo方法

 

publicstaticbooleanseekAtOrAfter(HFileScanners, KeyValue k)

 

throws IOException {

 

调用下面会提到的HFileReaderV2.AbstractScannerV2.seekTo方法

 

如果返回的值==0表示刚好对应上,直接返回true,不需要在进行next操作(当前的kv就是对的kv)

 

 

 

intresult = s.seekTo(k.getBuffer(), k.getKeyOffset(), k.getKeyLength());

 

if(result < 0) {

 

小米搞的一个对index中存储的key的优化,HBASE-7845

 

indexkey的值在小米的hbase-7845进行了优化,

 

存储的key是大于上一个block的最后一个key与小于当前block第一个key的一个值,如果是此值返回的值为-2

 

此时不需要像其它小于0的情况把当前的kv向下移动一个指针位,因为当前的值已经在第一位上

 

if (result == HConstants.INDEX_KEY_MAGIC) {

 

// using faked key

 

returntrue;

 

}

 

移动到文件的第一个block的开始位置,此部分代码通常不会被执行

 

// Passed KV is smaller than first KV in file, work from start of file

 

returns.seekTo();

 

} elseif(result > 0) {

 

当前scanstartkey小于当前的blockcurrentkey,移动到下一条数据

 

// Passed KV is larger than current KV in file, if there is a next

 

// it is the "after", if not then this scanner is done.

 

returns.next();

 

}

 

// Seeked to the exact key

 

returntrue;

 

}

 

HFileReaderV2.AbstractScannerV2.seekTo方法

 

publicintseekTo(byte[] key, intoffset, intlength) throws IOException {

 

// Always rewind to the first key of the block, because the given key

 

// might be before or after the current key.

 

returnseekTo(key, offset, length, true);

 

}

 

seekTo的嵌套调用

 

protectedintseekTo(byte[] key, intoffset, intlength, booleanrewind)

 

throws IOException {

 

得到HFileReaderV2中的block索引的reader实例,HFileBlockIndex.BlockIndexReader

 

 

 

HFileBlockIndex.BlockIndexReader indexReader =

 

reader.getDataBlockIndexReader();

 

 

 

blockindexreader中得到key对应的HFileBlock信息,

 

每一个block的第一个key都存储在metablock中在readerblockKeys,

 

indexkey的值在小米的hbase-7845进行了优化,

 

存储的key是大于上一个block的最后一个key与小于当前block第一个key的一个值

 

同时存储有此block对应的offset(readerblockOffsets)block size大小(readerblockDataSizes)

 

1.通过二分查找到meta block的所有key中比较,得到当前scanstartkey对应的block块的下标值

 

2.通过下标拿到block的开始位置,

 

3.通过下标拿到block的大小

 

4.加载对应的block信息,并封装成BlockWithScanInfo实例返回

 

 

 

BlockWithScanInfo blockWithScanInfo =

 

indexReader.loadDataBlockWithScanInfo(key, offset, length, block,

 

cacheBlocks, pread, isCompaction);

 

if (blockWithScanInfo == null || blockWithScanInfo.getHFileBlock() == null) {

 

// This happens if the key e.g. falls before the beginning of the file.

 

return -1;

 

}

 

调用HFileReaderV2.EncodedScannerV2 or HFileReaderV2.ScannerV2 loadBlockAndSeekToKey方法

 

1.更新当前的block块为seek后的block块,

 

2.把指标移动到指定的key的指针位置。

 

 

 

returnloadBlockAndSeekToKey(blockWithScanInfo.getHFileBlock(),

 

blockWithScanInfo.getNextIndexedKey(), rewind, key, offset, length, false);

 

}

 

 

 

执行StoreScanner.next方法处理

 

回到DefaultCompactor.compact的代码内,得到scanner后,要执行的写入新storefile文件的操作。

 

 

 

writer = store.createWriterInTmp(fd.maxKeyCount, this.compactionCompression, true,

 

fd.maxMVCCReadpoint >= smallestReadPoint);

 

booleanfinished = performCompaction(scanner, writer, smallestReadPoint);

 

 

 

performcompaction中通过StoreScanner.next(kvlist,limit)读取kv数据,

 

其中limit的大小通过hbase.hstore.compaction.kv.max配置,默认值为10,太大可能会出现oom的情况

 

通过HFileWriterV2.append添加kv到新的storefile文件中。

 

通过hbase.hstore.close.check.interval配置写入多少数据后检查一次store是否是可写的状态,

 

默认10*1000*1000(10m)

 

 

 

StoreScanner.next(kvlist,limit)

 

 

 

publicbooleannext(List<Cell> outResult, intlimit) throws IOException {

 

lock.lock();

 

try {

 

if (checkReseek()) {

 

returntrue;

 

}

 

 

 

// if the heap was left null, then the scanners had previously run out anyways, close and

 

// return.

 

if (this.heap == null) {

 

close();

 

returnfalse;

 

}

 

通过调用KeyValueHeap.peek-->StoreFileScanner.peek,得到当前seek后的keyvalue

 

如果当前的keyvaluenull,表示没有要查找的数据了,结束此次scan

 

KeyValue peeked = this.heap.peek();

 

if (peeked == null) {

 

close();

 

returnfalse;

 

}

 

 

 

// only call setRow if the row changes; avoids confusing the query matcher

 

// if scanning intra-row

 

byte[] row = peeked.getBuffer();

 

intoffset = peeked.getRowOffset();

 

shortlength = peeked.getRowLength();

 

此处的if检查通常在第一次运行时,或者说已经不是在一行查询内时,会进行,设置matcher.row为当前行的rowkey

 

if (limit < 0 || matcher.row == null || !Bytes.equals(row, offset, length, matcher.row,

 

matcher.rowOffset, matcher.rowLength)) {

 

this.countPerRow = 0;

 

matcher.setRow(row, offset, length);

 

}

 

 

 

KeyValue kv;

 

KeyValue prevKV = null;

 

 

 

// Only do a sanity-check if store and comparator are available.

 

KeyValue.KVComparator comparator =

 

store != null ? store.getComparator() : null;

 

 

 

intcount = 0;

 

LOOP: while((kv = this.heap.peek()) != null) {

 

++kvsScanned;

 

// Check that the heap gives us KVs in an increasing order.

 

assertprevKV == null || comparator == null || comparator.compare(prevKV, kv) <= 0 :

 

"Key " + prevKV + " followed by a " + "smaller key " + kv + " in cf " + store;

 

prevKV = kv;

 

检查kv

 

1.过滤filter.filterAllRemaining()==true,表示结束查询,返回DONE_SCAN

 

2.检查matcher中的rowkey(row属性,表示当前查找的所有kv在相同行),

 

如果matcher.row小于当前的peekkv,表示当前row的查找结束(current kv已经在下一行,返回DONE)

 

如果matcher.row大于当前的peekkv,peek出来的kvmatcher.row小,需要seek到下一行,返回SEEK_NEXT_ROW

 

3.检查ttl是否过期,如果过期返回SEEK_NEXT_COL

 

4.如果是minorcompactscan,这时的scantypeCOMPACT_RETAIN_DELETES,返回INCLUDE

 

5.如果kvdelete的类型,同时在deletesScanDeleteTracker)中包含此条数据

 

如果删除类型为FAMILY_DELETED/COLUMN_DELETED,那么返回SEEK_NEXT_COL

 

如果删除类型为VERSION_DELETED/FAMILY_VERSION_DELETED,那么返回SKIP

 

6.检查timestamp的值是否在TimeRange的范围内。如果超过最大值,返回SKIP,否则返回SEEK_NEXT_COL

 

7.执行filter.filterKeyValue().

 

如果filter返回为SKIP,直接返回SKIP

 

如果filter返回为NEXT_COL,返回SEEK_NEXT_COL

 

如果filter返回为NEXT_ROW,返回SEEK_NEXT_ROW

 

如果filter返回为SEEK_NEXT_USING_HINT,返回SEEK_NEXT_USING_HINT

 

否则表示filter返回为INCLUDEINCLUDE AND SEEK NEXT,执行下面流程

 

8.检查如果非delete类型的kv,是否超过maxVersion,如果是,或者数据ttl过期,返回SEEK_NEXT_ROW

 

如果数据没有过期,同时没有超过maxVersion,同时filter返回为INCLUDE_AND_NEXT_COL

 

返回INCLUDE_AND_SEEK_NEXT_COL。否则返回INCLUDE

 

ScanQueryMatcher.MatchCodeqcode = matcher.match(kv);

 

switch(qcode) {

 

caseINCLUDE:

 

caseINCLUDE_AND_SEEK_NEXT_ROW:

 

caseINCLUDE_AND_SEEK_NEXT_COL:

 

执行filtertransformCell操作,此处可以想办法让KV的值最可能的小,减少返回的值大小。

 

Filterf = matcher.getFilter();

 

if (f != null) {

 

// TODO convert Scan Query Matcher to be Cell instead of KV based ?

 

kv = KeyValueUtil.ensureKeyValue(f.transformCell(kv));

 

}

 

 

 

this.countPerRow++;

 

此时是compactscan,storeLimit-1,storeOffset0,此处的if检查不会执行

 

if (storeLimit > -1 &&

 

this.countPerRow > (storeLimit + storeOffset)) {

 

// do what SEEK_NEXT_ROW does.

 

if (!matcher.moreRowsMayExistAfter(kv)) {

 

returnfalse;

 

}

 

reseek(matcher.getKeyForNextRow(kv));

 

break LOOP;

 

}

 

把数据添加到返回的列表中。可通过storeLimitstoreOffset来设置每一个store查询的分页值。

 

前提是只有一个cf,只有一个kv的情况下

 

// add to results only if we have skipped #storeOffset kvs

 

// also update metric accordingly

 

if (this.countPerRow > storeOffset) {

 

outResult.add(kv);

 

count++;

 

}

 

 

 

if (qcode == ScanQueryMatcher.MatchCode.INCLUDE_AND_SEEK_NEXT_ROW) {

 

检查是否有下一行数据,也就是检查当前的kv是否达到stopkv值。

 

if (!matcher.moreRowsMayExistAfter(kv)) {

 

returnfalse;

 

}

 

移动到当前kv的后面,通过kvrowkey部分,加上long.minvalue,

 

cfcolumn的值都设置为null,这个值就是最大的kv,kv的比较方式可参见KeyValue.KVComparator

 

 

 

reseek(matcher.getKeyForNextRow(kv));

 

} elseif (qcode == ScanQueryMatcher.MatchCode.INCLUDE_AND_SEEK_NEXT_COL) {

 

 

 

由于此时是compactionnext col,所以直接移动到下一行去了。

 

否则得到下一个column的列名,移动到下一个列的数据前。见ScanQueryMatcher.getKeyForNextColumn方法

 

 

 

reseek(matcher.getKeyForNextColumn(kv));

 

} else {

 

否则是include,直接移动到下一行

 

this.heap.next();

 

}

 

 

 

if (limit > 0 && (count == limit)) {

 

如果达到limit的值,跳出while

 

break LOOP;

 

}

 

continue;

 

 

 

caseDONE:

 

当前row查询结束

 

returntrue;

 

 

 

caseDONE_SCAN:

 

结束本次的SCAN操作

 

close();

 

returnfalse;

 

 

 

caseSEEK_NEXT_ROW:

 

计算出当前的ROW的后面位置,也就是比当前的KV大,比下一行的KV小,并通过

 

reseek-->StoreFileScanner.reseek-->HFile.seekTo移动到下一个大于此rowkv

 

// This is just a relatively simple end of scan fix, to short-cut end

 

// us if there is an endKey in the scan.

 

if (!matcher.moreRowsMayExistAfter(kv)) {

 

returnfalse;

 

}

 

 

 

reseek(matcher.getKeyForNextRow(kv));

 

break;

 

 

 

caseSEEK_NEXT_COL:

 

计算出比当前KV大的下一列的KV值,移动到下一个KV

 

reseek(matcher.getKeyForNextColumn(kv));

 

break;

 

 

 

caseSKIP:

 

执行StoreScanner.KeyValueHeap.next

 

this.heap.next();

 

break;

 

 

 

caseSEEK_NEXT_USING_HINT:

 

如果存在下一列(kv),移动到下一个KV上,否则执行StoreScanner.KeyValueHeap.next

 

// TODO convert resee to Cell?

 

KeyValue nextKV = KeyValueUtil.ensureKeyValue(matcher.getNextKeyHint(kv));

 

if (nextKV != null) {

 

reseek(nextKV);

 

} else {

 

heap.next();

 

}

 

break;

 

 

 

default:

 

thrownewRuntimeException("UNEXPECTED");

 

}

 

}

 

 

 

if (count > 0) {

 

returntrue;

 

}

 

 

 

// No more keys

 

close();

 

returnfalse;

 

} finally {

 

lock.unlock();

 

}

 

}

 

 

 

KeyValueHeap.next方法流程:

 

 

 

public KeyValue next() throws IOException {

 

if(this.current == null) {

 

returnnull;

 

}

 

得到当前队列中topStoreFileScanner中的current kv的值,并把topscanner指针向下移动到下一个kv的位置

 

KeyValue kvReturn = this.current.next();

 

得到移动后的topcurrent(此时是kvReturn的下一个kv的值)

 

KeyValue kvNext = this.current.peek();

 

如果next kv的值是null,表示topscanner已经移动到文件的尾部,关闭此scanner,重新计算队列中的top

 

if (kvNext == null) {

 

this.current.close();

 

this.current = pollRealKV();

 

} else {

 

重新计算出current topscanner

 

KeyValueScannertopScanner = this.heap.peek();

 

if (topScanner == null ||

 

this.comparator.compare(kvNext, topScanner.peek()) >= 0) {

 

this.heap.add(this.current);

 

this.current = pollRealKV();

 

}

 

}

 

returnkvReturn;

 

}

 

 

 

compactionstorefile合并的新storefile写入流程

 

 

 

回到DefaultCompactor.compact的代码内,-->performcompaction(DefaultCompactor的上级类中Compactor)

 

performcompaction中通过StoreScanner.next(kvlist,limit)读取kv数据,

 

其中limit的大小通过hbase.hstore.compaction.kv.max配置,默认值为10,太大可能会出现oom的情况

 

通过HFileWriterV2.append添加kv到新的storefile文件中。

 

通过hbase.hstore.close.check.interval配置写入多少数据后检查一次store是否是可写的状态,

 

默认10*1000*1000(10m)

 

在每next一条数据后,一条数据包含多个column,所以会有多个kv的值。通过如下代码写入到新的storefile

 

do {

 

查找一行数据

 

hasMore = scanner.next(kvs, compactionKVMax);

 

// output to writer:

 

for (Cellc : kvs) {

 

KeyValue kv = KeyValueUtil.ensureKeyValue(c);

 

if (kv.getMvccVersion() <= smallestReadPoint) {

 

kv.setMvccVersion(0);

 

}

 

执行写入操作

 

writer.append(kv);

 

++progress.currentCompactedKVs;

 

.................................此处省去一些代码

 

kvs.clear();

 

} while (hasMore);

 

 

 

通过writer实例append kv到新的storefile中,writer实例通过如下代码生成:

 

DefaultCompactor.compact方法代码中:

 

 

 

writer = store.createWriterInTmp(fd.maxKeyCount, this.compactionCompression, true,

 

fd.maxMVCCReadpoint >= smallestReadPoint);

 

 

 

Hstore.createWriterIntmp-->StoreFile.WriterBuilder.build生成StoreFile.Writer实例,

 

此实例中引用的具体writer实例为HFileWriterV2

 

通过hfile.format.version配置,writer/reader的具体的版本,目前只能配置为2

 

 

 

HstoreFile.Writer.append(kv)流程:

 

 

 

publicvoidappend(final KeyValue kv) throws IOException {

 

写入到bloomfilter,如果kv与上一次写入的kvrow/rowcol的值是相同的,不写入,

 

保证每次写入到bloomfilter中的数据都是不同的rowrowcol

 

通过io.storefile.bloom.block.size配置bloomblock的大小,默认为128*1024

 

 

 

appendGeneralBloomfilter(kv);

 

 

 

如果kv是一个deletekv,把row写入到deletebloomfilter block中。

 

同一个行的多个kv只添加一次,要添加到此bloomfilter中,kvdelete type要是如下类型:

 

kv.isDeleteFamily==true,同时kv.isDeleteFamilyVersion==true

 

 

 

appendDeleteFamilyBloomFilter(kv);

 

 

 

把数据写入到HFileWriterV2output中。计算出此storefile的最大的timestamp(所有appendkv中最大的mvcc)

 

hfilev2的写入格式:klen(int) vlen(int) key value

 

hfilev2key的格式:klen(int) vlen(int)

 

rowlen(short) row cflen(byte)

 

cf column timestamp(long) type(byte)

 

每次append的过程中会检查block是否达到flush的值,

 

如果达到cf中配置的BLOCKSIZE的值,默认为65536,执行finishBlock操作写入数据,

 

同时写入此blockbloomfilter.生成一个新的block

 

 

 

writer.append(kv);

 

 

 

更新此storefile的包含的timestamp的范围,也就是更新最大/最小值

 

 

 

trackTimestamps(kv);

 

}

 

 

 

完成数据读取与写入操作后,回到DefaultCompactor.compact方法中,关闭writer实例

 

if (writer != null) {

 

writer.appendMetadata(fd.maxSeqId, request.isMajor());

 

writer.close();

 

newFiles.add(writer.getPath());

 

}

 

添加此storefile的最大的seqidfileinfo中。StoreFile.Writer中的方法

 

publicvoidappendMetadata(finallongmaxSequenceId, finalbooleanmajorCompaction)

 

throws IOException {

 

writer.appendFileInfo(MAX_SEQ_ID_KEY, Bytes.toBytes(maxSequenceId));

 

是否执行的majorCompaction

 

writer.appendFileInfo(MAJOR_COMPACTION_KEY,

 

Bytes.toBytes(majorCompaction));

 

appendTrackedTimestampsToMetadata();

 

}

 

 

 

publicvoidappendTrackedTimestampsToMetadata() throws IOException {

 

appendFileInfo(TIMERANGE_KEY,WritableUtils.toByteArray(timeRangeTracker));

 

appendFileInfo(EARLIEST_PUT_TS, Bytes.toBytes(earliestPutTs));

 

}

 

 

 

publicvoidclose() throws IOException {

 

以下两行代码作用于添加相关信息到fileinfo,see 下面的两个方法流程,不说明。

 

booleanhasGeneralBloom = this.closeGeneralBloomFilter();

 

booleanhasDeleteFamilyBloom = this.closeDeleteFamilyBloomFilter();

 

 

 

writer.close();

 

 

 

// Log final Bloom filter statistics. This needs to be done after close()

 

// because compound Bloom filters might be finalized as part of closing.

 

if (StoreFile.LOG.isTraceEnabled()) {

 

StoreFile.LOG.trace((hasGeneralBloom ? "" : "NO ") + "General Bloom and " +

 

(hasDeleteFamilyBloom ? "" : "NO ") + "DeleteFamily" + " was added to HFile " +

 

getPath());

 

}

 

 

 

}

 

 

 

privatebooleancloseGeneralBloomFilter() throws IOException {

 

booleanhasGeneralBloom = closeBloomFilter(generalBloomFilterWriter);

 

 

 

// add the general Bloom filter writer and append file info

 

if (hasGeneralBloom) {

 

writer.addGeneralBloomFilter(generalBloomFilterWriter);

 

writer.appendFileInfo(BLOOM_FILTER_TYPE_KEY,

 

Bytes.toBytes(bloomType.toString()));

 

if (lastBloomKey != null) {

 

writer.appendFileInfo(LAST_BLOOM_KEY, Arrays.copyOfRange(

 

lastBloomKey, lastBloomKeyOffset, lastBloomKeyOffset

 

+ lastBloomKeyLen));

 

}

 

}

 

returnhasGeneralBloom;

 

}

 

 

 

privatebooleancloseDeleteFamilyBloomFilter() throws IOException {

 

booleanhasDeleteFamilyBloom = closeBloomFilter(deleteFamilyBloomFilterWriter);

 

 

 

// add the delete family Bloom filter writer

 

if (hasDeleteFamilyBloom) {

 

writer.addDeleteFamilyBloomFilter(deleteFamilyBloomFilterWriter);

 

}

 

 

 

// append file info about the number of delete family kvs

 

// even if there is no delete family Bloom.

 

writer.appendFileInfo(DELETE_FAMILY_COUNT,

 

Bytes.toBytes(this.deleteFamilyCnt));

 

 

 

returnhasDeleteFamilyBloom;

 

}

 

 

 

HFileWriterV2.close()方法流程:

 

写入用户数据/写入bloomfilter的数据,写入datablockindex的数据,更新写入fileinfo,

 

写入FixedFileTrailer到文件最后。

 

0
0
分享到:
评论

相关推荐

    Doris 数据库 自动查找需要compaction 的tablet ,并自动执 compaction shell script

    (2)根据 get_need_compaction_tables.sh 中 的阈值 version_count_max=500 筛选出需要手工进行compaction的tablets (3)根据生成的结果执行 compaction; 【二 .脚本介绍】 (1)get_need_compaction_tables.sh ...

    LevelDB 学习笔记2:合并.doc

    在满足这些条件时,LevelDB 不会执行完整的 compaction,而是直接将文件移动到下一层,大大减少了 I/O 操作。 总结来说,LevelDB 的合并机制通过 minor compaction 和 major compaction 保证数据一致性,优化存储...

    rocksdb.pptx

    2. Compaction:是RocksDB维护数据结构和优化存储空间的关键过程,分为Minor Compaction和Major Compaction。 - Minor Compaction:主要作用是将内存中的memtable数据写入到SSTable文件,防止memtable过度增长影响...

    藏经阁-HBase In-Memory Compaction.pdf

    HBase In-Memory Compaction是HBase存储系统中的一种高性能的存储机制,它基于Log-Structured-Merge(LSM)树设计,通过将数据存储在内存中,减少磁盘I/O操作,提高写入吞吐量和读取延迟性能。 Accordion算法是...

    HBase数据读取流程解析-3——scan查询.pdf

    这些数据在Major Compaction期间才会被真正删除,这样的设计简化了更新和删除操作,但增加了读取时的复杂性。 Scan查询是HBase中一种重要的数据获取方式,它以行为基础,逐行扫描。首先,Scan会获取第一行的所有...

    HBase中Compaction及读缓存机制研究_王运萍

    将HBase作为研究对象,分析其存储架构,针对HBase存储机制进行深入研究

    6-5+腾讯广告OLTP_OLAP实践.pdf

    同时,为了避免存储过多版本带来的问题,通过自定义Coprocessor在Minor Compaction时清理无用版本,降低实际存储成本。 针对查询性能优化,文章提到了两个策略。一是稀疏表优化,由于报表数据的高稀疏度,大量0值...

    Hbase

    当客户端向`RegionServer`发起写操作时,如`HTable.put(Put)`请求,其流程如下: 1. **写入WAL**:首先将数据写入`Write-Ahead Log` (`WAL`),这是一个标准的Hadoop SequenceFile。WAL用于记录尚未被持久化到磁盘的...

    Apache Hadoop---Accumulo.docx

    它们接收客户端的写入操作,将数据先写入预写日志,再排序到内存中的MemTable,当达到一定大小后,会将MemTable中的数据持久化到磁盘上的ISAM文件,这个过程称为Minor Compaction。TabletServer同时处理读取请求,...

    Study on Vibration Friction Mechanism of Vibration Compaction-Soil System with Granules and Its Vibration Response Analysis

    此外,研究还展望了液体存在时散体材料的振动摩擦机制,为液体与土颗粒相互作用提供了新的研究视角。 综上所述,振动压实技术的深入研究不仅应关注振动对土体压实效果的影响,还应深入探讨土体内部的振动摩擦机理,...

    tsd-compaction:HBase 0.96 -> Hbase 0.99 的压缩库。 它实现了 OpenTSDB Compaction 算法

    然后在hbase shell中更改TSDB的't'列族的配置 disable 'tsdb' alter 'tsdb', {NAME =&gt; 't', CONFIGURATION =&gt; {'hbase.hstore.defaultengine.compactor.class' =&gt; ' com.twilio.compaction.TSDCompactor'}} ...

    HBaseInMemoryCompaction.pdf

    HBase的In-Memory Compaction技术是HBase在处理数据写入操作时采用的一种优化算法,它对数据进行内存中的整理和压缩,以此来改善系统性能。In-Memory Compaction的设计目标是在保证数据可靠性和持久性存储的同时,...

    content_1719122720400.docx

    - HBase 有两种类型的 Compaction:Minor Compaction 和 Major Compaction。 - Minor Compaction:合并多个较小的 HFile 文件。 - Major Compaction:定期执行,将所有的 HFile 文件合并为更大的文件。 3. **...

    biology-soil-compaction_Biological_

    标题 "biology-soil-compaction_Biological_" 暗示了我们即将探讨的主题是关于土壤压实与生物学的关系。在这个领域,我们将深入理解土壤生物活动如何受到土壤压实的影响,以及这种影响如何反过来对生态系统产生深远...

    实验三:熟悉常用的HBase操作.docx.zip

    在本实验中,我们将深入探讨HBase,一个分布式、版本化的NoSQL数据库,它构建于Apache Hadoop之上,专门设计用于处理大规模数据集。...通过掌握这些基本操作,你可以有效地利用HBase的强大功能来管理和分析海量数据。

    操作系统实验 动态分区分配模拟系统

    模拟系统应能展示这些现象,并可能提供减少碎片的方法,如紧凑(Compaction)操作。 3. **内存释放**:当进程结束或释放内存时,模拟系统需要处理如何将这部分内存重新纳入空闲分区列表,以及如何选择合适的合并...

    hbase性能调优

    - 当StoreFile数量达到或超过该阈值时,将触发Minor Compaction。 - 调整该值可以控制Compaction的频率,以适应不同的数据写入模式。 ##### 5. `hbase.hstore.blockingStoreFiles` - **含义**:定义了StoreFile...

    1-3+实时计算与自助式数据分析.pdf

    它支持随机读写操作,提供高效的Scan查询能力,这得益于其C++语言开发的底层结构。Kudu不依赖于HDFS,具有强Schema特性,即预先定义好的列结构,但列的数量是有限的。Kudu提供了Java、C++和Python客户端,并且与...

    HBase性能深度分析

    同时,compaction机制在文件数量超出“hbase.hstore.compactionThreshold”阈值时(默认3)启动,合并多个小文件,减少文件碎片,提升读写性能。 #### 结论与启示 通过对HBase数据插入性能的深度分析与实验验证,...

Global site tag (gtag.js) - Google Analytics